Skip to main content
Log in

Adsorption of benzyldimethyldodecylammonium bromide on silica nanoparticles in water

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Adsorption of the cationic surfactant benzyldimethyldodecylammonium bromide (BDDABr) on silica nanoparticles with ~ 12 and 31 nm in size (denoted as S-SiO2 and L-SiO2, respectively) is investigated at various solid dosages (Cs, 10–40 g/L), pH (3–10), and temperature (T, 298–308 K). No Cs-effect is observed in the adsorption. However, it is interestingly found that, besides pH and T, the size of the silica particles has an obvious influence on the adsorption. The adsorption may show the Langmuir type (L-type), S-type, and “double plateau” type (LS-type) isotherms, depending on silica particle sizes and pH. Increasing pH may lead to a change in the isotherm types from S-type through LS-type to L-type. The S-type and LS-type isotherms can be adequately described using the one-step and two-step surface micellization models, respectively. The affinity of the S-SiO2 toward BDDABr is lower than that of the L-SiO2, consistent with the dissociation tendency of their surface hydroxyl groups.

Adsorption of BDDABr on SiO2 in water is affected by the size of SiO2 particles besides pH and temperature. The affinity of small SiO2 toward BDDABr is lower than that of large SiO2, which is consistent with the dissociation tendency of their surface hydroxyl groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gu T, Zhu BY, Rupprecht H (1992) Surfactant adsorption and surface micellization. Colloid Polym Sci 88:74–85. https://doi.org/10.1007/BFb0114420

    Article  CAS  Google Scholar 

  2. Atkin R, Craig VSJ, Wanless EJ, Biggs S (2003) Mechanism of cationic surfactant adsorption at the solid–aqueous interface. Adv Colloid Interf Sci 103(3):219–304. https://doi.org/10.1016/S0001-8686(03)00002-2

    Article  CAS  Google Scholar 

  3. Paria S, Khilar KC (2004) A review on experimental studies of surfactant adsorption at the hydrophilic solid–water interface. Adv Colloid Interf Sci 110(3):75–95. https://doi.org/10.1016/j.cis.2004.03.001

    Article  CAS  Google Scholar 

  4. Parida SK, Dash S, Patel S, Mishra BK (2006) Adsorption of organic molecules on silica surface. Adv Colloid Interf Sci 121(1-3):77–110. https://doi.org/10.1016/j.cis.2006.05.028

    Article  CAS  Google Scholar 

  5. Zhang R, Somasundaran P (2006) Advances in adsorption of surfactants and their mixtures at solid/solution interfaces. Adv Colloid Interf Sci 123–126:213–229

    Article  Google Scholar 

  6. Mu Q, Jiang G, Chen L, Zhou H, Fourches D, Tropsha A, Yan B (2014) Chemical basis of interactions between engineered nanoparticles and biological systems. Chem Rev 114(15):7740–7781. https://doi.org/10.1021/cr400295a

    Article  CAS  Google Scholar 

  7. Tardy BL, Yokota S, Ago M, Xiang W, Kondo T, Bordes R, Rojas OJ (2017) Nanocellulose–surfactant interactions. Cur Opin Colloid Interface Sci 29:57–67

    Article  CAS  Google Scholar 

  8. Khobragade MU, Pal A (2016) Adsorptive removal of Mn(II) from water and wastewater by surfactant-modified alumina. Desalination Water Treat 57(6):2775–2786. https://doi.org/10.1080/19443994.2014.982195

    Article  CAS  Google Scholar 

  9. Pham TD, Do TT, Ha VL, Doan THY, Nguyen TAH, Mai TD, Kobayashi M, Adachi Y (2017) Adsorptive removal of ammonium ion from aqueous solution using surfactant-modified alumina. Environ Chem 14(5):327–337. https://doi.org/10.1071/EN17102

    Article  CAS  Google Scholar 

  10. Pham TD, Nguyen HH, Nguyen NV, Vu TT, Pham TNM, Doan THY, Nguyen MH, Ngo, TMV (2017) Adsorptive removal of copper by using surfactant modified laterite soil. J Chem 2017: ID 1986071, https://doi.org/10.1155/2017/1986071

  11. Gu T, Zhu BY (1990) The S-type isotherm equation for adsorption of nonionic surfactants at the silica gel–water interface. Colloids Surf 44:81–87. https://doi.org/10.1016/0166-6622(90)80189-B

    Article  CAS  Google Scholar 

  12. Zhu BY, Gu T (1989) General isotherm equation for adsorption of surfactants at solid/liquid interfaces. Part 1. Theoretical. J Chem Soc Faraday Trans I 85(11):3813–3817. https://doi.org/10.1039/f19898503813

    Article  CAS  Google Scholar 

  13. Zhu BY, Gu T, Zhao X (1989) General isotherm equation for adsorption of surfactants at solid/liquid interfaces. Part 2. Applications. J Chem Soc Faraday Trans I 85(11):3819–3824. https://doi.org/10.1039/f19898503819

    Article  CAS  Google Scholar 

  14. Zhu BY, Gu T (1991) Surfactant adsorption at solid–liquid interfaces. Adv Colloid Interf Sci 37(1-2):1–32. https://doi.org/10.1016/0001-8686(91)80037-K

    Article  CAS  Google Scholar 

  15. Scamehorn JF, Schechter RS, Wade WH (1982) Adsorption of surfactants on mineral oxide surfaces from aqueous solutions: I: Isomerically pure anionic surfactants. J Colloid Interface Sci 85(2):463–478. https://doi.org/10.1016/0021-9797(82)90013-3

    Article  CAS  Google Scholar 

  16. Böhmer MR, Koopal LK (1992) Adsorption of ionic surfactants on variable-charge surfaces. 1. Charge effects and structure of the adsorbed layer. Langmuir 8(11):2649–2659. https://doi.org/10.1021/la00047a014

    Article  Google Scholar 

  17. Koopal LK, Lee EM, Böhmer MR (1995) Adsorption of cationic and anionic surfactants on charged metal oxide surfaces. J Colloid Interface Sci 170(1):85–97. https://doi.org/10.1006/jcis.1995.1075

    Article  CAS  Google Scholar 

  18. Pham TD, Kobayashi M, Adachi Y (2013) Interfacial characterization of α-alumina with small surface area by streaming potential and chromatography. Colloids Surf A Physicochem Eng Asp 436:148–157. https://doi.org/10.1016/j.colsurfa.2013.06.026

    Article  CAS  Google Scholar 

  19. Pham TD, Kobayashi M, Adachi Y (2014) Adsorption of polyanion onto large alpha alumina beads with variably charged surface. Adv Phys Chem 2014: ID 460942, doi: https://doi.org/10.1155/2014/460942

  20. Pham TD, Kobayashi M, Adachi Y (2015) Adsorption characteristics of anionic azo dye onto large α-alumina beads. Colloid Polym Sci 293(7):1877–1886. https://doi.org/10.1007/s00396-015-3576-x

    Article  CAS  Google Scholar 

  21. Pham TD, Kobayashi M, Adachi Y (2015) Adsorption of anionic surfactant sodium dodecyl sulfate onto alpha alumina with small surface area. Colloid Polym Sci 293(1):217–227. https://doi.org/10.1007/s00396-014-3409-3

    Article  CAS  Google Scholar 

  22. Yang YJ, Corti DS, Franses EI (2017) Effect of Triton X-100 on the stability of titania nanoparticles against agglomeration and sedimentation: a masked depletion interaction. Colloids Surf A Physicochem Eng Asp 516:l296–l304

    Article  Google Scholar 

  23. Roth HC, Schwaminger S, García PF, Ritscher J, Berensmeier S (2016) Oleate coating of iron oxide nanoparticles in aqueous systems: the role of temperature and surfactant concentration. J Nanopart Res 18(4):99–110. https://doi.org/10.1007/s11051-016-3405-2

    Article  Google Scholar 

  24. Wood MH, Casford MT, Steitz R, Zarbakhsh A, Welbourn RJL, Clarke SM (2016) Comparative adsorption of saturated and unsaturated fatty acids at the iron oxide/oil interface. Langmuir 32(2):534–540. https://doi.org/10.1021/acs.langmuir.5b04435

    Article  CAS  Google Scholar 

  25. Reid MS, Villalobos M, Cranston ED (2017) The role of hydrogen bonding in non-ionic polymer adsorption to cellulose nanocrystals and silica colloids. Cur Opin Colloid Interface Sci 29:76–82

    Article  CAS  Google Scholar 

  26. Meissner J, Prause A, Bharti B, Findenegg GH (2015) Characterization of protein adsorption onto silica nanoparticles: influence of pH and ionic strength. Colloid Polym Sci 293(11):3381–3391. https://doi.org/10.1007/s00396-015-3754-x

    Article  CAS  Google Scholar 

  27. Jayawardane D, Pan F, JR L, Zhao X (2015) Co-adsorption of peptide amphiphile V6K and conventional surfactants SDS and C12TAB at the solid-water interface. Soft Matter 11(40):7986–7994. https://doi.org/10.1039/C5SM01670C

    Article  CAS  Google Scholar 

  28. Liu Y, Qiao L, Xiang Y, Guo R (2016) Adsorption behavior of low-concentration imidazolium-based ionic liquid surfactant on silica nanoparticles. Langmuir 32(11):2582–2590. https://doi.org/10.1021/acs.langmuir.6b00302

    Article  CAS  Google Scholar 

  29. Saha R, Uppaluri RVS, Tiwari P (2017) Effect of mineralogy on the adsorption characteristics of surfactant–reservoir rock system. Colloids Surf A Physicochem Eng Asp 531:121–132. https://doi.org/10.1016/j.colsurfa.2017.07.039

    Article  CAS  Google Scholar 

  30. Guégan R, Veron E, Forestier LL, Ogawa M, Cadars S (2017) Structure and dynamics of nonionic surfactant aggregates in layered materials. Langmuir 33(38):9759–9771. https://doi.org/10.1021/acs.langmuir.7b01831

    Article  Google Scholar 

  31. Harkot J, Jańczuk B (2009) He role of adsorption of dodecylethyldimethylammonium bromide and benzyldimethyldodecylammonium bromide surfactants in wetting of polytetrafluoroethylene and poly(methyl methacrylate) surfaces. Appl Surf Sci 255(6):3623–3628. https://doi.org/10.1016/j.apsusc.2008.10.007

    Article  CAS  Google Scholar 

  32. Yang Z, Tarabara VV, Bruening ML (2015) Adsorption of anionic or cationic surfactants in polyanionic brushes and its effect on brush swelling and fouling resistance during emulsion filtration. Langmuir 31(43):11790–11799. https://doi.org/10.1021/acs.langmuir.5b01938

    Article  CAS  Google Scholar 

  33. Meconi GM, Ballard N, Asua JM, Zangi R (2016) Adsorption and desorption behavior of ionic and nonionic surfactants on polymer surfaces. Soft Matter 12(48):9692–9704. https://doi.org/10.1039/C6SM01878E

    Article  CAS  Google Scholar 

  34. Moussavi G, Shekoohiyan S, Mojab S (2016) Adsorption capacity of NH4Cl-induced activated carbon for removing sodium dodecyl sulfate from water. Desalination Water Treat 57(24):11283–11290. https://doi.org/10.1080/19443994.2015.1043955

    Article  CAS  Google Scholar 

  35. Vo MD, Papavassiliou DV (2017) Effects of temperature and shear on the adsorption of surfactants on carbon nanotubes. J Phys Chem C 121(26):14339–14348. https://doi.org/10.1021/acs.jpcc.7b03904

    Article  CAS  Google Scholar 

  36. Striolo A (2017) Surfactant assemblies on selected nanostructured surfaces: evidence, driving forces, and applications. Langmuir 33(33):8099–8113. https://doi.org/10.1021/acs.langmuir.7b00756

    Article  CAS  Google Scholar 

  37. Trompette JL, Zajac J, Keh E, Partyka S (1994) Scanning of the cationic surfactant adsorption on a hydrophilic silica surface at low surface coverages. Langmuir 10(3):812–818. https://doi.org/10.1021/la00015a036

    Article  CAS  Google Scholar 

  38. Goloub TP, Koopal LK, Bijsterbosch BH (1996) Adsorption of cationic surfactants on silica. Surface charge effects. Langmuir 12(13):3188–3194. https://doi.org/10.1021/la9505475

    Article  CAS  Google Scholar 

  39. Zajac J, Trompette JL, Partyka S (1996) Adsorption of cationic surfactants on a hydrophilic silica surface at low surface coverages: effects of the surfactant alkyl chain and exchangeable sodium cations. Langmuir 12(5):1357–1367. https://doi.org/10.1021/la950645q

    Article  CAS  Google Scholar 

  40. Goloub TP, Koopal LK (1997) Adsorption of cationic surfactants on silica. Comparison of experiment and theory. Langmuir 13(4):673–681. https://doi.org/10.1021/la960690d

    Article  CAS  Google Scholar 

  41. Chorro M, Chorro C, Dolladille O, Partyka S, Zana R (1999) Adsorption mechanism of conventional and dimeric cationic surfactants on silica surface: effect of the state of the surface. J Colloid Interface Sci 210(1):134–143. https://doi.org/10.1006/jcis.1998.5936

    Article  CAS  Google Scholar 

  42. Grosmaire L, Chorro M, Chorro C, Partyka S (2001) Influence of the chemical surface state of silica on adsorption process of conventional cationic and Gemini surfactants: thermodynamic investigations. J Colloid Interface Sci 242(2):395–403. https://doi.org/10.1006/jcis.2001.7795

    Article  CAS  Google Scholar 

  43. Ahualli S, Iglesias GR, Wachter W, Dulle M, Minami D, Glatter O (2001) Adsorption of anionic and cationic surfactants on anionic colloids: supercharging and destabilization. Langmuir 27:9182–9192

    Article  Google Scholar 

  44. Cummins PG, Staples E, Penfold J (1991) Temperature dependence of the adsorption of hexaethylene glycol monododecyl ether (C12E6) on silica sols. J Phys Chem 95(15):5902–5905. https://doi.org/10.1021/j100168a035

    Article  CAS  Google Scholar 

  45. Penfold J, Staples E, Tucker I, Cummins P (1996) Adsorption of nonionic surfactants on silica sol particles: the effects of sol type and concentration, surfactant type, concentration, and temperature. J Phys Chem 100(46):18133–18137. https://doi.org/10.1021/jp9611838

    Article  CAS  Google Scholar 

  46. Greenwood R, Luckham PF, Gregory T (1995) The effect of particle size on the layer thickness of a stabilizing polymer adsorbed onto two different classes of polymer latex, as determined from rheological experiments. Colloids Surf A Physicochem Eng Asp 98(1-2):117–125. https://doi.org/10.1016/0927-7757(95)03114-S

    Article  CAS  Google Scholar 

  47. Vertegel AA, Siegel RW, Dordick JS (2004) Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir 20(16):6800–6807. https://doi.org/10.1021/la0497200

    Article  CAS  Google Scholar 

  48. Lindman S, Lynch I, Thulin E, Nilsson H, Dawson KA, Linse S (2007) Systematic investigation of the thermodynamics of HSA adsorption to N-iso-propylacrylamide/N-tert-butylacrylamide copolymer nanoparticles. Effects of particle size and hydrophobicity. Nano Lett 7(4):914–920. https://doi.org/10.1021/nl062743+

    Article  CAS  Google Scholar 

  49. Walkey CD, Olsen JB, Guo H, Emili A, Chan WCW (2012) Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J Am Chem Soc 134(4):2139–2147. https://doi.org/10.1021/ja2084338

    Article  CAS  Google Scholar 

  50. Bull JP, Serreqi AN, Chen T, Breuil C (1998) Development of an immunoassay for a quaternary ammonium compound, benzyldimethyldodecylammonium chloride. Wat Res 32(12):3621–3630. https://doi.org/10.1016/S0043-1354(98)00127-4

    Article  CAS  Google Scholar 

  51. Harkot J, Jańczuk B (2009) Surface and volume properties of dodecylethyldimethylammonium bromide and benzyldimethyldodecylammonium bromide I. Surface properties of dodecylethyldimethylammonium bromide and benzyldimethyldodecylammonium bromide. J Colloid Interface Sci 331(2):494–499. https://doi.org/10.1016/j.jcis.2008.11.064

    Article  CAS  Google Scholar 

  52. Ferreira C, Pereira AM, Pereira MC, Melo LF, Simões M (2011) Physiological changes induced by the quaternary ammonium compound benzyldimethyldodecylammonium chloride on pseudomonas fluorescens. J Antimicrob Chemother 66(5):1036–1043. https://doi.org/10.1093/jac/dkr028

    Article  CAS  Google Scholar 

  53. Ghosh KK, Baghel V (2008) Micellar properties of benzyldimethyldodecylammonium bromide in aquo-organic solvent media. Indian J Chem 47A:1230–1233

    CAS  Google Scholar 

  54. Harkot J, Jańczuk B (2009) Surface and volume properties of dodecylethyldimethylammonium bromide and benzyldimethyldodecylammonium bromide II. Volumetric properties of dodecylethyldimethylammonium bromide and benzyldimethyldodecylammonium bromide. J Colloid Interface Sci 330(2):467–473. https://doi.org/10.1016/j.jcis.2008.10.078

    Article  CAS  Google Scholar 

  55. Zhao LX, Song SE, Du N, Hou WG (2013) A sorbent concentration-dependent Freundlich isotherm. Colloid Polym Sci 291(3):541–550. https://doi.org/10.1007/s00396-012-2742-7

    Article  CAS  Google Scholar 

  56. Zhang F, Song Y, Song S, Zhang R, Hou W (2015) Synthesis of magnetite–graphene oxide-layered double hydroxide composites and applications for the removal of Pb (II) and 2, 4-dichlorophenoxyacetic acid from aqueous solutions. ACS Appl Mater Interfaces 7(13):7251–7263. https://doi.org/10.1021/acsami.5b00433

    Article  CAS  Google Scholar 

  57. Jolsterå R, Gunneriusson L, Forsling W (2010) Adsorption and surface complex modeling of silicates on maghemite in aqueous suspensions. J Colloid Interface Sci 342(2):493–498. https://doi.org/10.1016/j.jcis.2009.10.080

    Article  Google Scholar 

  58. Wang LL, Wang LF, Ren XM, Ye XD, Li WW, Yuan SJ, Sun M, Sheng GP, Yu HQ, Wang XK (2012) pH dependence of structure and surface properties of microbial EPS. Environ Sci Technol 46(2):737–744. https://doi.org/10.1021/es203540w

    Article  CAS  Google Scholar 

  59. Li L, Du X, Lu Y, Yang Z (2007) Study on the first-step adsorption of dodecyltrimethylammonium bromide solutions on silica wafer surfaces by ultramicroelectrode voltammetry. Electrochem Commun 9(9):2308–2314. https://doi.org/10.1016/j.elecom.2007.06.039

    Article  CAS  Google Scholar 

  60. Zhang WM, Yang ZD, Liu J, Sun ZX (2010) Determination of acid-base equilibrium constants on aqueous mesoporous silica surfaces. Acta Phys -Chim Sin 26:2109–2114

    CAS  Google Scholar 

  61. Liu J, Zhang WM, Huang PP, Fan JN, Sun RG, Sun ZX (2011) Surface complexation reactions in a mixed α-Fe2O3, γ-Al2O3 and SiO2 suspension. Acta Phys-Chim Sin 27:186–192

    Google Scholar 

  62. Zhu X, Du N, Song R, Hou W, Song S, Zhang R (2014) Rough glass surface-mediated formation of vesicles from lauryl sulfobetaine micellar solutions. Langmuir 30(39):11543–11551. https://doi.org/10.1021/la502965q

    Article  CAS  Google Scholar 

  63. Song R, Du N, Zhu X, Li H, Song S, Hou W (2015) Rough glass surface-mediated transition of micelle-to-vesicle in sodium dodecylbenzenesulfonate solutions. J Phys Chem B 119(9):3762–3767. https://doi.org/10.1021/jp509795v

    Article  CAS  Google Scholar 

  64. Roelants E, Geladé E, Smid J, De Schryver FC (1985) A study of temperature dependence of the mean aggregation number and the kinetic parameters of quenching in CTAC and TTAC micelles. J Colloid Interface Sci 107(2):337–344. https://doi.org/10.1016/0021-9797(85)90186-9

    Article  CAS  Google Scholar 

  65. Zana R, Benrraou M, Bales BL (2004) Effect of the nature of the counterion on the properties of anionic surfactants. 3. Self-association behavior of tetrabutylammonium dodecyl sulfate and tetradecyl sulfate: clouding and micellar growth. J Phys Chem B 108(47):18195–18203. https://doi.org/10.1021/jp040507m

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21573133).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanguo Hou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 1522 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, S., Xu, H., Du, N. et al. Adsorption of benzyldimethyldodecylammonium bromide on silica nanoparticles in water. Colloid Polym Sci 296, 341–353 (2018). https://doi.org/10.1007/s00396-017-4256-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-017-4256-9

Keywords

Navigation