Skip to main content
Log in

Zein self-assembly using the built-in ultrasonic dialysis process: microphase behavior and the effect of dialysate properties

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The microphase behavior at different time scales was investigated to understand the mechanism of zein self-assembly during the built-in ultrasonic dialysis process (BUDP) in this study. The results indicated that the mutual mass transfer between zein solution and dialysate changed the solvent polarity, which caused the conformational transition of zein molecules, formation of stable droplets under the ultrasonic field, and further solidification of the compact microspheres. The effects of dialysate properties on zein self-assembly were investigated. The results showed that both pH and ionic strength had a great effect on the size, zeta potential, and morphology of the obtained zein particles, where zein microspheres with a size around 1–2 μm and zeta potential > 30 mV were obtained at pH 4–pH 8 and NaCl concentration ≤ 10 mM. And non-ionic Tween 60 could be used as a potential surfactant to improve the stability of zein samples through a physical combination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Zhang S (2003) Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol 21(10):1171–1178. https://doi.org/10.1038/nbt874

    Article  CAS  Google Scholar 

  2. Cui H, Webber MJ, Stupp SI (2010) Self-assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials. Pept Sci 94(1):1–18. https://doi.org/10.1002/bip.21328

    Article  CAS  Google Scholar 

  3. Stephanopoulos N, Ortony JH, Stupp SI (2013) Self-assembly for the synthesis of functional biomaterials. Acta Mater 61(3):912–930. https://doi.org/10.1016/j.actamat.2012.10.046

    Article  CAS  Google Scholar 

  4. Keresztessy Z, Bodnár M, Ber E, Hajdu I, Zhang M, Hartmann JF, Minko T, Borbély J (2009) Self-assembling chitosan/poly-γ-glutamic acid nanoparticles for targeted drug delivery. Colloid Polym Sci 287(7):759–765. https://doi.org/10.1007/s00396-009-2022-3

    Article  CAS  Google Scholar 

  5. Texter J, Tirrell M (2001) Chemical processing by self-assembly. AICHE J 47(8):1706–1710. https://doi.org/10.1002/aic.690470802

    Article  CAS  Google Scholar 

  6. Dong F, Padua GW, Wang Y (2013) Controlled formation of hydrophobic surfaces by self-assembly of an amphiphilic natural protein from aqueous solutions. Soft Matter 9(25):5933–5941. https://doi.org/10.1039/c3sm50667c

    Article  CAS  Google Scholar 

  7. Percec V, Dulcey AE, Balagurusamy VSK, Miura Y, Smidrkal J, Peterca M, Nummelin S, Edlund U, Hudson SD, Heiney PA, DA H, Magonov SN, Vinogradov SA (2004) Self-assembly of amphiphilic dendritic dipeptides into helical pores. Nature 430(7001):764–768. https://doi.org/10.1038/nature02770

    Article  CAS  Google Scholar 

  8. Liu G, Jiang Y, Wang X (2015) Tailoring particle microstructures via supercritical CO2 processes for particular drug delivery. Curr Pharm Design 21(19):2543–2562. https://doi.org/10.2174/1381612821666150416101116

    Article  CAS  Google Scholar 

  9. Liu B, Fu Z, Han Y, Zhang M, Zhang H (2017) Facile synthesis of large sized and monodispersed polymer particles using particle coagulation mechanism: an overview. Colloid Polym Sci 295(5):749–757. https://doi.org/10.1007/s00396-017-4058-0

    Article  CAS  Google Scholar 

  10. Liu B, Fu Z, Zhang M, Zhang H (2016) Preparation of monodisperse, sub-micrometer polymer particles by one-step emulsion polymerization under particle coagulation. Colloid Polym Sci 294(4):787–793. https://doi.org/10.1007/s00396-016-3850-6

    Article  CAS  Google Scholar 

  11. Deng W, Guo H, Zhang W, Kan C (2014) Fabrication and morphology control of hollow polymer particles by altering core particle size. Colloid Polym Sci 292(10):2687–2694. https://doi.org/10.1007/s00396-014-3323-8

    Article  CAS  Google Scholar 

  12. Brinker CJ, Lu Y, Sellinger A, Fan H (1999) Evaporation-induced self-assembly: nanostructures made easy. Adv Mater 11(7):579–585. https://doi.org/10.1002/(SICI)1521-4095(199905)11:7<579::AID-ADMA579>3.0.CO;2-R

    Article  CAS  Google Scholar 

  13. Nandiyanto ABD, Okuyama K (2011) Progress in developing spray-drying methods for the production of controlled morphology particles: from the nanometer to submicrometer size ranges. Adv Powder Technol 22(1):1–19. https://doi.org/10.1016/j.apt.2010.09.011

    Article  CAS  Google Scholar 

  14. Pustulka KM, Wohl AR, Lee HS, Michel AR, Han J, Hoye TR, McCormick AV, Panyam J, Macosko CW (2013) Flash nanoprecipitation: particle structure and stability. Mol Pharm 10(11):4367–4377. https://doi.org/10.1021/mp400337f

    Article  CAS  Google Scholar 

  15. Sprow FB (1967) Distribution of drop sizes produced in turbulent liquid—liquid dispersion. Chem Eng Sci 22(3):435–442. https://doi.org/10.1016/0009-2509(67)80130-1

    Article  CAS  Google Scholar 

  16. Liu G, Li S, Huang Y, Wang H, Jiang Y (2016) Incorporation of 10-hydroxycamptothecin nanocrystals into zein microspheres. Chem Eng Sci 155:405–414. https://doi.org/10.1016/j.ces.2016.08.029

    Article  CAS  Google Scholar 

  17. Liu G, Wei D, Wang H, Hu Y, Jiang Y (2016) Self-assembly of zein microspheres with controllable particle size and narrow distribution using a novel built-in ultrasonic dialysis process. Chem Eng J 284:1094–1105. https://doi.org/10.1016/j.cej.2015.09.067

    Article  CAS  Google Scholar 

  18. Wang H, Zhu W, Huang Y, Li Z, Jiang Y, Xie Q (2017) Facile encapsulation of hydroxycamptothecin nanocrystals into zein-based nanocomplexes for active targeting in drug delivery and cell imaging. Acta Biomater 61:88–100. https://doi.org/10.1016/j.actbio.2017.04.017

    Article  CAS  Google Scholar 

  19. Shukla R, Cheryan M (2001) Zein: the industrial protein from corn. Ind Crop Prod 13(3):171–192. https://doi.org/10.1016/S0926-6690(00)00064-9

    Article  CAS  Google Scholar 

  20. Wang Y, Padua GW (2010) Formation of zein microphases in ethanol− water. Langmuir 26(15):12897–12901. https://doi.org/10.1021/la101688v

    Article  CAS  Google Scholar 

  21. Wang Q, Yin L, Padua GW (2008) Effect of hydrophilic and lipophilic compounds on zein microstructures. Food Biophys 3(2):174–181. https://doi.org/10.1007/s11483-008-9080-9

    Article  CAS  Google Scholar 

  22. Wang Y, Padua GW (2012) Formation of zein spheres by evaporation-induced self-assembly. Colloid Polym Sci 290(15):1593–1598. https://doi.org/10.1007/s00396-012-2749-0

    Article  CAS  Google Scholar 

  23. Wang Y, Padua GW (2012) Nanoscale characterization of zein self-assembly. Langmuir 28(5):2429–2435. https://doi.org/10.1021/la204204j

    Article  CAS  Google Scholar 

  24. Zhong Q, Jin M (2009) Zein nanoparticles produced by liquid–liquid dispersion. Food Hydrocoll 23(8):2380–2387. https://doi.org/10.1016/j.foodhyd.2009.06.015

    Article  CAS  Google Scholar 

  25. Argos P, Pedersen K, Marks MD, Larkins BA (1982) A structural model for maize zein proteins. J Biol Chem 257(17):9984–9990

    CAS  Google Scholar 

  26. Zou Y, Guo J, Yin SW, Wang JM, Yang XQ (2015) Pickering emulsion gels prepared by hydrogen-bonded zein/tannic acid complex colloidal particles. J Agric Food Chem 63(33):7405–7414. https://doi.org/10.1021/acs.jafc.5b03113

    Article  CAS  Google Scholar 

  27. Cabra V, Arreguin R, Vazquez-Duhalt R, Farres A (2006) Effect of temperature and pH on the secondary structure and processes of oligomerization of 19 kDa alpha-zein. BBA- Proteins Proteom 1764(6):1110–1118. https://doi.org/10.1016/j.bbapap.2006.04.002

    Article  CAS  Google Scholar 

  28. Podaralla S, Perumal O (2012) Influence of formulation factors on the preparation of zein nanoparticles. AAPS PharmSciTech 13(3):919–927. https://doi.org/10.1208/s12249-012-9816-1

    Article  CAS  Google Scholar 

  29. Li G, Guo L, Meng Y, Zhang T (2011) Self-assembled nanoparticles from thermo-sensitive polyion complex micelles for controlled drug release. Chem Eng J 174(1):199–205. https://doi.org/10.1016/j.cej.2011.08.079

    Article  CAS  Google Scholar 

  30. Carrick LM, Aggeli A, Boden N, Fisher J, Ingham E, Waigh TA (2007) Effect of ionic strength on the self-assembly, morphology and gelation of pH responsive β-sheet tape-forming peptides. Tetrahedron 63(31):7457–7467. https://doi.org/10.1016/j.tet.2007.05.036

    Article  CAS  Google Scholar 

  31. Yin H, Lu T, Liu L, Lu C (2015) Preparation, characterization and application of a novel biodegradable macromolecule: carboxymethyl zein. Int J Biol Macromol 72:480–486. https://doi.org/10.1016/j.ijbiomac.2014.08.025

    Article  CAS  Google Scholar 

  32. Sessa DJ, Cheng H, Kim S, Selling GW, Biswas A (2013) Zein-based polymers formed by modifications with isocyanates. Ind Crop Prod 43:106–113. https://doi.org/10.1016/j.indcrop.2012.06.034

    Article  CAS  Google Scholar 

  33. Yan J, Zhang Q-L, Tong H-F, Lin D-Q, Yao S-J (2015) Hydrophobic charge-induction resin with 5-aminobenzimidazol as the functional ligand: preparation, protein adsorption and immunoglobulin G purification. J Sep Sci 38(14):2387–2393. https://doi.org/10.1002/jssc.201500178

    Article  CAS  Google Scholar 

  34. Navdeep BTS, Kaur G, Bakshi MS (2016) Nanoparticle surface specific adsorption of zein and its self-assembled behavior of nanocubes formation in relation to on–off SERS: understanding morphology control of protein aggregates. J Agric Food Chem 64(3):596–607. https://doi.org/10.1021/acs.jafc.5b05495

    Article  CAS  Google Scholar 

  35. Han F, Li S, Yin R, Liu H, Xu L (2008) Effect of surfactants on the formation and characterization of a new type of colloidal drug delivery system: nanostructured lipid carriers. Colloid Surface A 315(1-3):210–216. https://doi.org/10.1016/j.colsurfa.2007.08.005

    Article  CAS  Google Scholar 

Download references

Funding

Financial support from the National Natural Science Foundation of China (No. 21476086, 21776102) and China Postdoctoral Science Foundation (No. 2017M612663) is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanbin Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Highlights

• Zein self-assembly was conducted by a built-in ultrasonic dialysis process.

• The microphase behavior at different time scales was studied.

• The effects of dialysate pH, ionic strength and surfactants were investigated.

• Suitable conditions for the formation of zein microspheres were proposed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Feng, J., Zhu, W. et al. Zein self-assembly using the built-in ultrasonic dialysis process: microphase behavior and the effect of dialysate properties. Colloid Polym Sci 296, 173–181 (2018). https://doi.org/10.1007/s00396-017-4238-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-017-4238-y

Keywords

Navigation