Skip to main content
Log in

A new class of copolymer colloids with tunable, low refractive index for investigations of structure and dynamics in concentrated suspensions

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Highly charged polymer colloids may serve as model systems for the investigation of condensed matter, if they self-organize to liquid-like, glassy or crystalline phases. Multiple scattering due to refractive index differences of colloidal particles and suspending medium is a serious problem when utilizing light scattering experiments for these investigations. In this work, a new class of monodisperse colloidal dispersions is prepared by means of emulsion copolymerization of the monomers n-butyl acrylate and 2,2,2-trifluoroethyl acrylate. By systematic variation of the molar ratio of fluorinated and non-fluorinated monomers, the refractive index n p of the colloidal copolymer particles is tuned in the range 1.38 < n p < 1.45. Thus, particles with any composition of both monomers can be index-matched by protic water/glycerol mixtures as demonstrated by minima of the relative transmission of suspensions in dependence on the refractive index of the suspending medium. Static and dynamic light scattering experiments as well as analysis of the static structure factors S(Q) by means of integral equations are employed to investigate the self-organization of the resulting colloidal copolymer particles. Hereby, the potential application of these new model systems to investigate dynamics in concentrated binary mixtures is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pusey PN (1991) Liquids, freezing and glass transition, chapter colloidal suspensions. Elsevier, Amsterdam, pp 763–942

    Google Scholar 

  2. Poon WCK (2004) Colloids as big atoms. Science 304:830–831

    Article  CAS  Google Scholar 

  3. van Megen W, Ottewill R, Owens S, Pusey PN (1985) Measurement of the wave-vector dependent diffusion coefficient in concentrated particle dispersions. J Chem Phys 82(1):508–515

    Article  CAS  Google Scholar 

  4. van Megen W, Pusey PN (1991) Dynamic light-scattering study of the glass transition in a colloidal suspension. Phys Rev A 43(10):5429–5441

    Article  CAS  Google Scholar 

  5. van Megen W, Underwood SM, Pusey PN (1991) Nonergodicity parameters of colloidal glasses. Phys Rev Lett 67(12):1586–1589

    Article  CAS  Google Scholar 

  6. Cinacchi G, Martinez-Raton Y, Mederos L, Navascues G, Tani A, Velasco E (2007) Large attractive depletion interactions in soft repulsive-sphere binary mixtures. J Chem Phys 127(21)

  7. Paloli D, Mohanty PS, Crassous JJ, Zaccarelli E, Schurtenberger P (2013) Fluid-solid transitions in soft-repulsive colloids. Soft Matter 9:3000–3004

    Article  CAS  Google Scholar 

  8. Härtl W, Versmold H (1984) Temperature dependence of the structure factor S(Q) of liquid-like ordered colloidal dispersions. J Chem Phys 81(5):2507–2510

    Article  Google Scholar 

  9. Härtl W, Zhang-Heider X (1997) The synthesis of a new class of polymer colloids with a low index of refraction. J Colloid Interface Sci 185:398–401

    Article  Google Scholar 

  10. Horn FM, Richtering W, Bergenholtz J, Willenbacher N, Wagner NJ (2000) Hydrodynamic and colloidal interactions in concentrated charge-stabilized polymer dispersions. J Colloid Interface Sci 225(1):166–178

    Article  CAS  Google Scholar 

  11. Wagner J, Härtl W, Walderhaug H (2001) Long time self diffusion in suspensions of highly charged colloids: a comparison between pulsed field gradient NMR and Brownian dynamics. J Chem Phys 114:975

    Article  CAS  Google Scholar 

  12. Yethiraj A, van Blaaderen A (2003) A colloidal model system with an interaction tunable from hard sphere to soft and dipolar. Nature 421(6922):513–517

    Article  CAS  Google Scholar 

  13. Wagner J, Fischer B, Autenrieth T (2006) Field induced anisotropy of charged magnetic colloids: a rescaled mean spherical approximation study. J Chem Phys 124:114901

    Article  Google Scholar 

  14. Wagner J, Fischer B, Autenrieth T, Hempelmann R (2006) Structure and dynamics of charged magnetic colloids. J Phys.: Condens Matter 18:S2697–S2711

    CAS  Google Scholar 

  15. Dijkstra M, Hansen JP, Madden P (1995) Gelation of a clay colloid suspension. Phys Rev Lett 75:2236–2239

    Article  CAS  Google Scholar 

  16. Dijkstra M, Hansen J-P, Madden PA (1997) Statistical model for the structure and gelation of smectite clay suspensions. Phys Rev E 55:3044–3053

    Article  CAS  Google Scholar 

  17. Derjaguin BV, Landau LD (1941) Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Phys Chim URSS 14:633–662

    Google Scholar 

  18. Verwey EJW, Overbeek JTG (1948) Theory of the stability of lyophobic colloids. Elsevier

  19. Clark NA, Hurd AJ, Ackerson BJ (1979) Single colloidal crystals. Nature 281:57–60

    Article  CAS  Google Scholar 

  20. Härtl W, Versmold H, Wittig U, Linse P (1992) Structure and dynamics of polymer colloid suspensions from dynamic light scattering and Brownian dynamics simulation. J Chem Phys 97(10):7797–7804

    Article  Google Scholar 

  21. Palberg T (2014) Crystallization kinetics of colloidal model suspensions: recent achievements and new perspectives. J Phys: Condens Matter 26(33)

  22. Härtl W, Versmold H, Zhang-Heider X (1995) The glass transition of charged polymer colloids. J Chem Phys 102:6613

    Article  Google Scholar 

  23. Marx E, Mulholland GW (1983) Size and refractive index determination of single polystyrene spheres. J Res Natl Bur Stand 88(5):321–338

    Article  CAS  Google Scholar 

  24. Ma X, Lu JQ, Brock RS, Jacobs KM, Yang P, Hu X-H (2003) Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm. Phys Med Biol 48(24): 4165

    Article  Google Scholar 

  25. Stieber F, Richtering W (1995) Fiber-optic-dynamic-light-scattering and two-color-cross-correlation studies of turbid, concentrated, sterically stabilized polystyrene latex. Langmuir 11(12):4724–4727

    Article  CAS  Google Scholar 

  26. Rojas L, Vavrin R, Urban C, Kohlbrecher J, Stradner A, Scheffold F, Schurtenberger P (2003) Particle dynamics in concentrated colloidal suspensions. Faraday Discuss 123:385–400

    Article  CAS  Google Scholar 

  27. van Gruijthuijsen K, Bouwman WG, Schurtenberger P, Stradner A (2014) Direct comparison of SESANS and SAXS to measure colloidal interactions. EPL, 106(2)

  28. French RH, Rodriguez-Parada JM, Yang MK, Derryberry RA, Lemon MF, Brown MJ, Haeger CR, Samuels SL, Romano EC, Richardson RE (2009) Optical properties of materials for concentrator photovoltaic systems Photovoltaic specialists conference (PVSC), 2009 34th IEEE, pp 000394–000399

    Chapter  Google Scholar 

  29. Katritzky AR, Sild S, Karelson M (1998) Correlation and prediction of the refractive indices of polymers by QSPR. J Chem Inf Comput Sci 38(6):1171–1176

    Article  CAS  Google Scholar 

  30. Wagner J, Härtl W, Hempelmann R (2000) Characterization of monodisperse colloidal particles: comparison between SAXS and DLS. Langmuir 16(9):4080–4085

    Article  CAS  Google Scholar 

  31. Yao W, Li Y, Huang X (2014) Fluorinated poly(meth)acrylate: synthesis and properties. Polymer 55 (24):6197–6211

    Article  CAS  Google Scholar 

  32. Wagner J, Härtl W, Lellig C, Hempelmann R, Walderhaug H (2002) Complex liquids consisting of low- t G polymer- colloids: structure and self-diffusion. J Mol Liq 98:183–190

    Article  Google Scholar 

  33. Hoyt LF (1934) New table of the refractive index of pure glycerol at 20 C. Ind Eng Chem 26(3):329–332

    Article  CAS  Google Scholar 

  34. Schotten C (1884) Ueber die oxydation des piperidins. Berichte der deutschen chemischen Gesellschaft 17 (2):2544–2547

    Article  Google Scholar 

  35. Baumann E (1886) Ueber eine einfache Methode der darstellung von benzoesaeureaethern. Berichte der deutschen chemischen Gesellschaft 19(2):3218–3222

    Article  Google Scholar 

  36. Codding DW, Reid TS, Ahlbrecht AH, Smith GHJ, Husted DR (1955) Fluorine-containing polymers. II. 1,1-dihydroperfluoroalkyl acrylates: preparation of monomers. J Polym Sci 15:515–519

    Article  CAS  Google Scholar 

  37. Boutevin B, Regal G, Rousseau A (1988) Synthese de materiaux polymeres transparents - partie II synthese et polymerisation d’acrylates et de methacrylates d’halogenoalkyle. J Fluorine Chem 38:47–73

    Article  CAS  Google Scholar 

  38. Schmitt M, Wagner J, Jung G, Hempelmann R (2007) Funtionalized polymer colloids bearing primary amino groups. J Colloid Interface Sci 311:425–429

    Article  CAS  Google Scholar 

  39. Fischer B, Wagner J, Gutt C, Westermeier F, Grübel G (2010) Structure and dynamics of glassy charged colloids studied with coherent small angle X-ray scattering. J Phys: Conf Ser 247(1):012026

    Google Scholar 

  40. Provencher SW (1982) CONTIN — a general-purpose constrained regularization program for inverting noisy linear algebraic and integral-equations. Comput Phys Commun 27(3):229–242

    Article  Google Scholar 

  41. Provencher SW (1982) A constrained regularization method for inverting data represented by linear algebraic or integral-equations. Comput Phys Commun 27(3):213–227

    Article  Google Scholar 

  42. Altenberger AR, Deutch JM (1973) Light scattering from dilute macromolecular solutions. J Chem Phys 59(2):894–898

    Article  CAS  Google Scholar 

  43. Hayter JB, Penfold J (1981) Self-consistent structural and dynamic study of concentrated micelle solutions. J Chem Soc Faraday Trans 1(77):1851–1863

    Article  Google Scholar 

  44. Berne BJ, Pecora R (2000) Dynamic light scattering — with applications to chemistry, biology and physics. Dover Publications

  45. Nägele G (1996) On the dynamics and structure of charge-stabilized suspensions. Phys Rep 272(5-6):215–372

    Article  Google Scholar 

  46. Fischer B, Autenrieth T, Wagner J (2010) Highly charged inorganic-organic colloidal core-shell particles. Langmuir 26(9):6201–6205

    Article  CAS  Google Scholar 

  47. Flory PJ (1946) Fundamental principles of condensation polymerization. Chem Rev 39(1):137–197

    Article  CAS  Google Scholar 

  48. Schulz GV (1949) Molecular weight determination in macromolecular compounds. VIII. Distribution function of multimolecular compounds and their determination by fractionation. Z Phys Chem (Muenchen, Ger.) B47:155–193

    Google Scholar 

  49. Wagner J (2004) Small-angle scattering from spherical core–shell particles: an analytical scattering function for particles with Schulz–Flory size distribution. J Appl Crystallogr 37(5):750–756

    Article  CAS  Google Scholar 

  50. Ornstein LS, Zernike F (1914) Accidental deviations of density and opalescence at the critical point of a single substance. Proc Akad Sci (Amsterdam) 17:793–806

    Google Scholar 

  51. Hansen J-P, Hayter JB (1982) A rescaled MSA structure factor for dilute charged colloidal dispersions. Mol Phys 46(3):651–656

    Article  CAS  Google Scholar 

  52. Härtl W, Beck C, Hempelmann R (1999) Determination of hydrodynamic properties in highly charged colloidal systems using static and dynamic light scattering. J Chem Phys 110(14):7070–7072

    Article  Google Scholar 

  53. Hansen J-P, Verlet L (1969) Phase transitions of the Lennard-Jones system. Phys Rev 184(1)

  54. Löwen H, Palberg T, Simon R (1993) Dynamical criterion for freezing of colloidal liquids. Phys Rev Lett 70(10)

  55. Wagner J, Härtl W, Walderhaug H (2001) Long time self-diffusion in suspensions of highly charged colloids: a comparison between pulsed field gradient NMR and Brownian dynamics. J Chem Phys 114(2):975–983

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Wagner.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

This work was carried out with funding from the German Federal Ministry of Education and Research within the collaborative project 605 and the European Social Fund via a graduate scholarship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ziegert, F., Koof, M. & Wagner, J. A new class of copolymer colloids with tunable, low refractive index for investigations of structure and dynamics in concentrated suspensions. Colloid Polym Sci 295, 1563–1574 (2017). https://doi.org/10.1007/s00396-017-4137-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-017-4137-2

Keywords

Navigation