Skip to main content
Log in

Effect of Polydispersity on the Phase Diagram of Colloid Systems

  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A theoretical model is proposed that describes the experimentally observed phase diagram of colloidal dispersions of disk-shaped polydisperse particles. In the framework of the phenomenological theory of phase transitions, it is shown that if disk-shaped particles have polydispersity comparable in thickness and disk diameter, then the following sequence of phase transitions should be expected with increasing volume fraction of ϕ particles: an isotropic liquid (I); a nematic liquid crystal (N), in which the director n sets the preferred orientation of the disk normal; and the discotic (columnar) phase (C), in which the disklike molecules aggregate into liquid columns, and the latter form a two-dimensional hexagonal crystal consisting of liquid columns. However, when the particles forming the colloidal dispersion do not have any polydispersity in thickness (but the polydispersity in the particle diameter is preserved), another sequence of phase transitions takes place, in which the columnar phase is replaced by a smectic liquid crystal (S); that is, particles form a system of equidistant liquid layers. This work proposes and discusses the mechanisms of this behavior and new predictions that follow from this consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. Sun, Hung-Jue Sue, Zh. Cheng, Yu. Martinez-Raton, and E. Velasco, Phys. Rev. E 80, 041704 (2009).

    Article  ADS  Google Scholar 

  2. M. Dijkstra, Curr. Opin. Colloid Interface Sci. 6, 372 (2001).

    Article  Google Scholar 

  3. D. Frenkel and B. Smit, in Algorithms to Applications (Academic, New York, 2001).

    MATH  Google Scholar 

  4. D. Frenkel, Phys. A (Amsterdam, Neth.) 313, 1 (2002).

  5. H. N. W. Lekkerkerker and R. Tuiner, Colloids and the Depletion Interaction (Springer, Berlin, 2011).

    Book  Google Scholar 

  6. A. Mertelj, D. Lisjak, M. Drofenik, and M. Copic, Nature (London, U.K.) 504, 237 (2013).

    Article  ADS  Google Scholar 

  7. Q. Liu, P. J. Ackerman, T. C. Lubensky, and I. I. Smalyukh, Proc. Natl. Acad. Sci. (U.S.A.) 113, 1601235 (2016).

    Google Scholar 

  8. F. Brochard and P. G. de Gennes, J. Phys. 31, 691 (1970).

    Article  Google Scholar 

  9. E. I. Kats and V. V. Lebedev, Sov. Phys. JETP 69, 1155 (1989).

    Google Scholar 

  10. A. B. D. Brown, C. Ferrero, T. Narayanan, and A. R. Rennie, Eur. Phys. J. B 11, 481 (1999).

    Article  ADS  Google Scholar 

  11. F. M. var der Kooij, K. Kassapidon, and M. N. W. Lekkerker, Nature (London, U.K.) 406, 868 (2000).

  12. M. Bates and D. Frenkel, J. Chem. Phys. 110, 6553 (1999).

    Article  ADS  Google Scholar 

  13. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon, Oxford, 1993).

    Google Scholar 

  14. P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge Univ. Press, Cambridge, 2000).

    Google Scholar 

  15. T. Odagaki and K. Okazuki, J. Phys.: Condens. Matter 17, 4531 (2005).

    ADS  Google Scholar 

  16. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1995; Pergamon, Oxford, 1980).

  17. L. G. Fel, Phys. Rev. E 52, 702 (1995).

    Article  ADS  Google Scholar 

  18. E. V. Gurovich, E. I. Kats, and V. V. Lebedev, Sov. Phys. JETP 73, 473 (1991).

    Google Scholar 

  19. P. G. Bolhuis and H. N. W. Lekkerkerer, Phys. A (Amsterdam, Neth.) 196, 375 (1993).

  20. P. Woolston and J. S. van Duijneveldt, J. Chem. Phys. 142, 184901 (2015).

    Article  ADS  Google Scholar 

  21. S. A. Brazovskii, Sov. Phys. JETP 41, 85 (1975).

    ADS  Google Scholar 

  22. E. I. Kats and A. R. Muratov, Sov. Phys. JETP 67, 89 (1988).

    Google Scholar 

  23. E. I. Kats, V. V. Lebedev, and A. R. Muratov, Phys. Rep. 228, 1 (1993).

    Article  ADS  Google Scholar 

  24. V. V. Brazhkin, A. G. Lyapin, V. N. Ryzhov, K. Trachenko, Yu. D. Fomin, and E. N. Tsiok, Phys. Usp. 55, 1061 (2012).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to Zhengdong Cheng for discussing the current state of the problem of phase diagrams of polydisperse colloidal dispersions. The work was started during the author’s stay at Tohoku University (Sendai, Japan), and I am grateful to T. Nakanishi and N. Yoshinaga for their hospitality and useful questions when I reported this topic.

Author information

Authors and Affiliations

Authors

Additional information

Contribution for the JETP special issue in honor of L.P. Pitaevskii’s 85th birthday

Translated by Andrey Zeigarnik

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kats, E.I. Effect of Polydispersity on the Phase Diagram of Colloid Systems. J. Exp. Theor. Phys. 127, 939–944 (2018). https://doi.org/10.1134/S1063776118110055

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776118110055

Navigation