Skip to main content

Advertisement

Log in

Pentaerythritol particles covered by layer-by-layer self assembled thin films with stereocomplex of isotactic poly(methyl methacrylate) and syndiotactic poly(methyl methacrylate)

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this paper, we present a different approach of coating a phase change material (PCM) for a possible use in thermal energy storage. We focused on layer-by-layer coating of pentaerythritol (PE) particles, which was achieved through stereocomplex formation of isotactic (it-)poly(methyl methacrylate) (PMMA) and syndiotactic (st-)PMMA as coating materials. As a model system, a quartz crystal microbalance (QCM) was covered by PE and subsequently coated by alternated dipping into solutions of it-PMMA and st-PMMA in hexane/acetonitrile (1/9, v/v). Frequency shifts in each step were calculated using Sauerbrey’s equation and specific peaks of PE, PMMA, and PMMA stereocomplex were detected by FT-IR. The results indicate a stepwise formation of PMMA stereocomplex onto the PE substrate covering the QCM. Furthermore, PE particles were prepared by homogenization and coated by alternating submersion in solutions of it-PMMA and st-PMMA in hexane/acetonitrile (1/9, v/v). After 20 cycles resulting in 40 PMMA layers, IR measurements of the particles showed the specific peaks for PE, PMMA, and PMMA stereocomplex. SEM pictures of uncoated PE particles and of residues of the coated particles after washing out the PE by water/methanol (water/MeOH) were compared to confirm the successful coating. With this basic demonstration of the processes feasibility for the abovementioned materials, the enhanced PCMs could be developed for the use in thermal energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sharma A, Tyagi VV, Chen CR, Buddhi D (2009) Review on thermal energy storage with phase change materials and applications Renew Sust Energ Rev 13:318–345. doi:10.1016/j.rser.2007.10.005

    Article  CAS  Google Scholar 

  2. Pielichowska K, Pielichowski K (2014) Phase change materials for thermal energy storage Prog Mater Sci 65:67–123. doi:10.1016/j.pmatsci.2014.03.005

    Article  CAS  Google Scholar 

  3. Richardson JJ, Bjoernmalm M, Caruso F (2015) Multilayer assembly. Technology-driven layer-by-layer assembly of nanofilms Science 348:6233. doi:10.1126/science.aaa2491

    Article  Google Scholar 

  4. Al-Shannaq R, Farid M, Al-Muhtaseb S, Kurdi J (2015) Emulsion stability and cross-linking of PMMA microcapsules containing phase change materials Sol Energy Mater Sol Cells 132:311–318. doi:10.1016/j.solmat.2014.08.036

    Article  CAS  Google Scholar 

  5. Farid MM, Khudhair AM, Razack SAK, Al-Hallaj S (2004) A review on phase change energy storage: materials and applications Energy Convers Manag 45:1597–1615. doi:10.1016/j.enconman.2003.09.015

    Article  CAS  Google Scholar 

  6. Hayashi Y, Fuchigami K, Taguchi Y, Tanaka M (2014) Preparation of microcapsules containing erythritol with interfacial polycondensation reaction by using the (w/o) emulsion J Encapsul Adsorp Sci 4:132–141. doi:10.4236/jeas.2014.44014

    Article  Google Scholar 

  7. Chaiyasat P, Noppalit S, Okubo M, Chaiyasat A (2016) Innovative synthesis of high performance poly(methyl methacrylate) microcapsules with encapsulated heat storage material by microsuspension iodine transfer polymerization (ms ITP) Sol Energy Mater Sol Cells 157:996–1003. doi:10.1016/j.solmat.2016.07.028

    Article  CAS  Google Scholar 

  8. Zhang H, Wang X (2009) Fabrication and performances of microencapsulated phase change materials based on n-octadecane core and resorcinol-modified melamine–formaldehyde shell Colloid Surf A 332:129–138. doi:10.1016/j.colsurfa.2008.09.013

    Article  CAS  Google Scholar 

  9. Yang Y, Kuang J, Wang H, Song G, Liu Y, Tang G (2016) Enhancement in thermal property of phase change microcapsules with modified silicon nitride for solar energy Sol Energy Mater Sol Cells 151:89–95. doi:10.1016/j.solmat.2016.02.020

    Article  CAS  Google Scholar 

  10. Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites Science 277:1232–1237. doi:10.1126/science.277.5330.1232

    Article  CAS  Google Scholar 

  11. Grigoriev DO, Bukreeva T, Möhwald H, Shchukin DG (2008) New method for fabrication of loaded micro- and nanocontainers: emulsion encapsulation by polyelectrolyte layer-by-layer deposition on the liquid core Langmuir 24:999–1004. doi:10.1021/la702873f

    Article  CAS  Google Scholar 

  12. Kida T, Mouri M, Akashi M (2006) Fabrication of hollow capsules composed of poly(methyl methacrylate) stereocomplex films Angew Chem Int Ed 45:7534–7536. doi:10.1002/anie.200602116

    Article  CAS  Google Scholar 

  13. Ajiro H, Beckerle K, Okuda J, Akashi M (2012) Layer-by-layer assembly of partially sulfonated isotactic polystyrene with poly(vinylamine) Langmuir 28:5372–5378. doi:10.1021/la300627q

    Article  CAS  Google Scholar 

  14. Ajiro H, Kamei D, Akashi M (2009) Mechanistic studies on template polymerization in porous isotactic poly(methyl methacrylate) thin films by radical polymerization and postpolymerization of methacrylate derivatives Macromolecules 42:3019–3025. doi:10.1021/ma8028634

    Article  CAS  Google Scholar 

  15. Serizawa T, Hamada K, Kitayama T, Fujimoto N, Hatada K, Akashi M (2000) Stepwise stereocomplex assembly of stereoregular poly(methyl methacrylate)s on a substrate J Am Chem Soc 122:1891–1899. doi:10.1021/ja9913535

    Article  CAS  Google Scholar 

  16. Schomaker E, Challa G (1989) Complexation of stereoregular poly(methyl methacrylates). 14. The basic structure of the stereocomplex of isotactic and syndiotactic poly(methyl methacrylate) Macromolecules 22:3337–3341. doi:10.1021/ma00198a025

    Article  CAS  Google Scholar 

  17. Nishiura T, Kitayama T, Hatada K (1996) Intra- and intermolecular stereocomplex formation of uniform stereoblock poly(methyl methacrylate) Polym J 28:1021–1023. doi:10.1295/polymj.28.1021

    Article  Google Scholar 

  18. Solé A, Neumann H, Niedermaier S, Martonell I, Schossig P (2014) Stability of sugar alcohols as PCM for thermal energy storage Sol Energy Mater Sol Cells 126:125–134. doi:10.1016/j.solmat.2014.03.020

    Article  Google Scholar 

  19. Zhang X, Chen X, Han Z, Xu W (2016) Study on phase change interface for erythritol with nano-copper in spherical container during heat transport Int J Heat Mass Transf 92:490–496. doi:10.1016/j.ijheatmasstransfer.2015.08.095

    Article  CAS  Google Scholar 

  20. Kumaresan G, Velraj R, Iniyan S (2011) Thermal analysis of D-mannitol for use as phase change materials for latent heat storage J Appl Sci 16:3044–3048. doi:10.3923/jas.2011

    Google Scholar 

  21. Hu P, Zhao PP, Jin Y, Chen ZS (2014) Experimental study on solid–solid phase change properties of pentaerythritol (PE)/nano-AlN composite for thermal storage Sol Energy 102:91–97. doi:10.1016/j.solener.2014.01.018

    Article  CAS  Google Scholar 

  22. Gunasekaraa SN, Pana R, Chiua JN, Martina V (2014) Polyols as phase change materials for low-grade excess heat storage Energy Procedia 61:664–669. doi:10.1016/j.egypro.2014.11.938

    Article  Google Scholar 

  23. PalomoDelBarrio E, Cadoret R, Daranlot J, Achchaq F (2016) New sugar alcohols mixtures for long-term thermal energy storage applications at temperatures between 70 °C and 100 °C Sol Energy Mater Sol Cells 155:454–468. doi:10.1016/j.solmat.2016.06.048

    Article  CAS  Google Scholar 

  24. Serizawa T, Hamada K, Akashi M (2004) Polymerization within a molecular-scale stereoregular template Nature 429:52–55. doi:10.1038/nature02525

    Article  CAS  Google Scholar 

  25. Sauerbrey G (1959) Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung Z Phys 1959(155):206–222. doi:10.1007/BF01337937

    Article  Google Scholar 

  26. Ajiro H, Hinoue T, Akashi M (2013) Inkjet approaches contribute to facile isotactic poly(methyl)/syndiotactic poly(methyl methacrylate) stereocomplex surface preparation Macromol Chem Phys 214:1590–1595. doi:10.1002/macp.201300207

    Article  CAS  Google Scholar 

  27. Lohmeyer JHGM, Tan YY, Lako P, Challa G (1978) Stereoselective association between isotactic poly(methyl methacrylate) and syndiotactic poly(methacrylic acid) Polymer 19:1171–1175. doi:10.1016/0032-3861(78)90066-6

    Article  CAS  Google Scholar 

  28. Mihailov M, Dirlikov S, Peeva N, Georgieva Z (1973) Conformational structure and stereocomplex formation in poly(methyl methacrylate) Macromolecules 1973(6):511–513. doi:10.1021/ma60034a008

    Article  Google Scholar 

  29. Domalski ES, Hearing ED (1996) Heat capacities and entropies of organic compounds in the condensed phase. Volume III J Phys Chem Ref Data 25:1–525

    Article  CAS  Google Scholar 

  30. Feng H, Liu X, He S, Wu K, Zhang J (2000) Studies on solid–solid phase transitions of polyols by infrared spectroscopy Thermochim Acta 348:175–179. doi:10.1016/S0040-6031(99)00403-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is partly supported by TEPCO Memorial Foundation. This work is also partly supported by JST PRESTO (JPMJPR14K2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroharu Ajiro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seitz, S., Akashi, M. & Ajiro, H. Pentaerythritol particles covered by layer-by-layer self assembled thin films with stereocomplex of isotactic poly(methyl methacrylate) and syndiotactic poly(methyl methacrylate). Colloid Polym Sci 295, 1541–1548 (2017). https://doi.org/10.1007/s00396-017-4133-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-017-4133-6

Keywords

Navigation