Skip to main content
Log in

A simplified synthesis of silica Colloids with tunable hydrophobicity

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Colloidal silica nanoparticles with average diameters less than 100 nm were made using a modified Stöber method involving tetraethylorthosilicate (TEOS) and octadecyl trimethoxysilane (OTMOS) as a surface modifier. We show that the hydrophobicity of the nanoparticles could be tuned in this one-step reaction by introducing methanol as a co-solvent with ethanol and optimizing the ammonium hydroxide concentration and time elapsed between TEOS and OTMOS addition. Using this approach, silica nanoparticles could be made directly with the proper surface hydrophobicity to stabilize invert (water-in-oil) emulsions with shear-thinning rheological behavior as needed in oil drilling applications. Particle characterization data from transmission and scanning electron microscopy (TEM and SEM), Fourier transform infrared (FTIR) spectroscopy, thermal gravimetric analysis (TGA), and contact angle measurements are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69

    Article  Google Scholar 

  2. Rao KS, El-Hami K, Kodaki T, Matsushige K, Makino K (2005) A novel method for synthesis of silica nanoparticles. J Colloid Interface Sci 289:125–131

    Article  CAS  Google Scholar 

  3. Marini M, Pourabbas B, Pilati F, Fabbri P (2008) Functionally modified core-shell silica nanoparticles by one-pot synthesis. Colloids Surf A Physicochem Eng Asp 317:473–481

    Article  CAS  Google Scholar 

  4. Effati E, Pourabbas B (2012) One-pot synthesis of sub-50 nm vinyl- and acrylate-modified silica nanoparticles. Powder Technol 219:276–283

    Article  CAS  Google Scholar 

  5. Juárez AJ, Whitby CP (2012) Oil-in-water Pickering emulsion destabilisation at low particle concentrations. J Colloid and Interface Sci 368:319–325

    Article  Google Scholar 

  6. Vignati E, Piazza R (2003) Pickering emulsions: interfacial tension, colloidal layer morphology, and trapped-particle motion. Langmuir 19:6650–6656

    Article  CAS  Google Scholar 

  7. Dickinson E (2010) Food emulsions and foams: stabilization by particles. Curr Opin Colloid Interface Sci 15:40–49

    Article  CAS  Google Scholar 

  8. Simovic S, Prestidge CA (2007) Nanoparticle layers controlling drug release from emulsions. Eur J Pharm Biopharm 67:39–47

    Article  CAS  Google Scholar 

  9. Frelichowska J, Bolzinger MA, Pelletier J, Valour JP, Chevalier Y (2009) Topical delivery of lipophilic drugs from o/w Pickering emulsions. Int J Pharm 371:56–63

    Article  CAS  Google Scholar 

  10. Fujii S, Okada M, Furuzono T (2007) Hydroxyapatite nanoparticles as stimulus-responsive particulate emulsifiers and building block for porous materials. J Colloid Interface Sci 315:287–296

    Article  CAS  Google Scholar 

  11. Binks BP, Rodrigues JA (2003) Types of phase inversion of silica particle stabilized emulsions containing triglyceride oil. Langmuir 19:4905–4912

    Article  CAS  Google Scholar 

  12. Aveyard R, Binks BP, Clint JH (2003) Emulsions stabilised solely by colloidal particles. Adv Colloid and Interface Sci 100:503–546

    Article  Google Scholar 

  13. Binks BP, Whitby CP (2005) Nanoparticle silica-stabilised oil-in-water emulsions: improving emulsion stability. Coll. Surf., A 253:105–115

    Article  CAS  Google Scholar 

  14. Bergna HE, Roberts WO (eds) (2006) Colloidal silica: fundamentals and applications. CRC Taylor & Francis, Boca Raton, FL

    Google Scholar 

  15. Tago T, Hatsuta T, Miyajima K, Kishida M, Tashiro S, Wakabayashi K (2002) Novel synthesis of silica-coated ferrite nanoparticles prepared using water-in-oil microemulsion. J Am Ceram Soc 85:2188–2194

    Article  CAS  Google Scholar 

  16. Yi DK, Lee SS, Papefthymiou GC, Ying JY (2006) Nanoparticle architectures templated by SiO2/Fe2O3 nanocomposites. Chem Mater 18:614–619

    Article  CAS  Google Scholar 

  17. Lee DC, Mikulec FV, Pelaez JM, Koo B, Korgel BA (2006) Synthesis and magnetic properties of silica-coated FePt nanocrystals. J Phys Chem B 110:11160–11166

    Article  CAS  Google Scholar 

  18. Bechtold, M. F.; Snyder, O. E. (E. I. du Pont de Nemours & Co., USA) Chemical processes and composition. US Patent 2, 574, 902, Nov. 13, 1951.

  19. Rule, J. M. (E. I. du Pont de Nemours & Co., USA) Process of making stable silica sols and resulting composition. US Patent 2, 577, 485, Dec. 4, 1951.

  20. Bragg, J. R.; Varadara, R. (Exxon Mobil Upstream Research Company, USA) Solids-stabilized oil-in-water emulsion and a method for preparing the same. US Patent 7, 121, 339, Oct. 17, 2006.

  21. Baran, J. R.; Carbrera, O. J. (3M Innovative Properties Company, USA) Use of surface-modified nanparticles for oil recovery. US Patent 7, 033, 975, Apr. 25, 2006.

  22. Agarwal S, Tran P, Soong Y, Martello D, Gupta RK (2011) Flow behavior of nanoparticle stabilized drilling fluids and effect of high temperature aging. Am Assoc Drilling Eng (AADE) April 12-14

  23. Agarwal S, Phuoc TX, Soong Y, Martello D, Gupta RK (2013) Nanoparticle-stabilised invert emulsion drilling fluids for deep-hole drilling of oil and gas. Can J Chem Eng 91:1641–1649

    Article  CAS  Google Scholar 

  24. Fleming, J. K.; Fleming, H. C. (J. K. F. Investments Ltd; Hour Holdings Ltd., CA) Invert emulsion drilling mud. US Patent 5, 472, 937, Dec. 5, 1995.

  25. Badley RD, Ford WT, McEnroe FJ, Assink RA (1990) Surface modification of colloidal silica. Langmuir 6:792–801

    Article  CAS  Google Scholar 

  26. Binks BP, Lumsdon SO (2000) Influence of particle wettability on the type and stability of surfactant-free emulsions. Langmuir 16:8622–8631

    Article  CAS  Google Scholar 

  27. Binks BP, Murakami R (2006) Phase inversion of particle-stabilized materials from foams to dry water. Nature Mater 5:865–869

    Article  CAS  Google Scholar 

  28. Binks BP, Clint JH (2002) Solid wettability from surface energy components: relevance to Pickering emulsions. Langmuir 18:1270–1273

    Article  CAS  Google Scholar 

  29. Tambe DE, Sharma MM (1994) The effect of colloidal particles on fluid-fluid interfacial properties and emulsion stability. Adv Colloid Interf Sci 52:1–63

    Article  CAS  Google Scholar 

  30. Binks BP, Rodrigues JA (2005) Inversion of emulsions stabilized solely by ionizable nanoparticles. Angew Chem Int Ed 44:441–444

    Article  CAS  Google Scholar 

  31. Xue L, Li J, Fu J, Han Y (2009) Super-hydrophobicity of silica nanoparticles modified with vinyl groups. Coll Surf, A 338:15–19

    Article  CAS  Google Scholar 

  32. Bogush GH, Tracy MA, Zukoski IV CF (1988) Preparation of monodisperse silica particles: control of size and mass fraction. J Non-Crystalline Solids 104:95–106

    Article  CAS  Google Scholar 

  33. Jethmalani JM, Sunkara HB, Ford WT, Willoughby SL, Ackerson BJ (1997) Optical diffraction from silica-poly (methyl methacrylate) composite films. Langmuir 13:2633

    Article  CAS  Google Scholar 

  34. Li ZF, Swihart MT, Ruckenstein E (2004) Luminescent silicon nanoparticles capped by conductive polyaniline through the self-assembly method. Langmuir 20:1963

    Article  CAS  Google Scholar 

  35. Mandal TK, Fleming MS, Walt DR (2000) Production of hollow polymeric microspheres by surface-confined living radical polymerization on silica templates. Chem Mater 12:3481

    Article  CAS  Google Scholar 

  36. Park JT, Seo JA, Ahn SH, Kim JH, Kang SW (2010) Surface modification of silica nanoparticles with hydrophilic polymers. J Ind Eng Chem 16:517–522

    Article  CAS  Google Scholar 

  37. Socrates G (1994) Infrared characteristic group frequencies: tables and charts. New York, John Wiley & Sons, pp. 34–194

    Google Scholar 

  38. Binks BP (2002) Particles as surfactants—similarities and differences. Curr Opin Colloid Interface Sci 7:21–41

    Article  CAS  Google Scholar 

  39. Hsu MF, Nikolaides MG, Dinsmore AD, Bausch AR, Gordon VD, Chen X, Hutchinson JW, Weitz DA (2005) Self-assembled shells composed of colloidal particles: fabrication and characterization. Langmuir 21:2963–2970

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Heonjoo Ha and Chris Ellison for their assistance with the rheology measurements. Financial support of this work was provided by the Robert A. Welch Foundation through grant no. F-1464.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eghbal Sahraei or Brian A. Korgel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dargahi-Zaboli, M., Sahraei, E., Pourabbas, B. et al. A simplified synthesis of silica Colloids with tunable hydrophobicity. Colloid Polym Sci 295, 925–932 (2017). https://doi.org/10.1007/s00396-017-4079-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-017-4079-8

Keywords

Navigation