Skip to main content
Log in

Hybrid nanocomposites of layered double hydroxides: an update of their biological applications and future prospects

  • Review Article
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Recently, there has been a rapid growth in the research related to the synthesis of new materials with hierarchical structures and tailored properties. Different 2D materials like graphene, clay, and layered double hydroxides (LDHs) possessing organized nanosheets act as building blocks for such hierarchial structures. On combining with a range of foreign materials such as organic molecules, gels, polymers, inorganic, and metal nanoparticles, they develop a remarkable potential for application as a large number of advanced materials with tailored properties. Because of the cheaper cost, easier methods of preparation, biocompatibility, and high compositional variability of LDH, it is worthwhile to focus on LDH nanosheet-based hybrid materials. In the future, undoubtedly, this new generation of hybrid materials, mainly born from a world-wide research effort of various workers in the last decade, will open a large number of promising applications in many areas such as electronics, catalysis, energy, and environment more particularly in agriculture and medicine. In this review, it is tried to set in one place in a systematic way the different information available in various peer-reviewed journals in the field of medicine and agriculture. Their reported advantages, especially with reference to the targeted controlled-release behavior of different bioactive molecules, the structure of the component bioactive molecules, and the points for their future demands and scopes of improvements in these fields are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Dupin JC, Martinez H, Guimon C, Dumitriu E, Fechete I (2004) Intercalation compounds of Mg-Al layered double hydroxides with diclofenac: different methods of preparation and physicochemical characterization. Appl Clay Sci 27:95–106

    Article  CAS  Google Scholar 

  2. He J, Wei M, Li B, Kang Y, Evans DG, Duan X (2006) Preparation of layered double hydroxides. Struct Bond 119:89–119

    Article  CAS  Google Scholar 

  3. Evans DG, Slade RCT (2006) Structural aspects of layered double hydroxides. Struct Bond 119:1–87

    CAS  Google Scholar 

  4. Khan AI, Ragavan A, Fong B, Markland C, O’Brien M, Dunbar TG, Williams GR, O’Hare D (2009) Recent developments in the used of layered double hydroxides as host materials for the storage and triggered release of functional anions. Ind End Chem Res 48:10196–10205

    Article  CAS  Google Scholar 

  5. Khan AI, O’Hare D (2002) Intercalation chemistry of layered double hydroxides: recent developments and applications. J Mater Chem 12:3191–3198

    Article  CAS  Google Scholar 

  6. Benito P, Herrero M, Labajos FM, Rives V (2010) Effect of post-synthesis microwave–hydrothermal treatment on the properties of layered double hydroxides and related materials. Appl Clay Sci 48:218–227

    Article  CAS  Google Scholar 

  7. Manzi-Nshuti C, Wang D, Hossenlopp JM, Wilkie CA (2008) Aluminum containing layered double hydroxides: the thermal, mechanical, and fire properties of (nano)composites with poly(methyl methacrylate). J Mater Chem 18:3091–3102

    Article  CAS  Google Scholar 

  8. Cavani F, Trifirò F, Vaccari A (1991) Hydrotalcite-type anionic clays: preparation, properties and applications. Catal Today 11:173–301

    Article  CAS  Google Scholar 

  9. Williams GR, Khan AI, O’Hare D (2006) Mechanistic and kinetics studies of guest ion intercalation into layered double hydroxides using time-resolved, in-situ x-ray powder diffraction. Struct Bond 119:161–192

    Article  CAS  Google Scholar 

  10. Allmann R (1970) Doppelschichtstrukturen mit brucitähnlichen Schichtionen [Me(II)1-x Me(III) x (OH)2]x+. Chimica, 24. Heft 3:99–107

    Google Scholar 

  11. Taylor HFW (1973) Crystal structures of some double hydroxide minerals. Min Mag 39(304):377–389

    Article  CAS  Google Scholar 

  12. Feitknecht W, Gerber M (1942) Zur kenntnis der doppelhydroxide und basischen doppelsalze III: über magnesium-aluminiumdoppelhydroxid. Helv CHim Acta 25:131–137

    Article  CAS  Google Scholar 

  13. Xue B, Hui Z, Liguang D (2014) Layered double hydroxide-based nanocarriers for drug delivery. Pharmaceutics 6:298–332

    Article  CAS  Google Scholar 

  14. Duan X, Evans DG, Mingos DMP (2005) Layered double hydroxides: structure and bonding. Springer Berlin Heidelberg, New York

    Google Scholar 

  15. Reichle WT (1986) Synthesis of anionic clay minerals (mixed metal hydroxides, hydrotalcite). Solid State Ionics 22:135–141

    Article  CAS  Google Scholar 

  16. Pérez-Ramírez J, Kapteijn F, Moulijn JA (1999) High activity and stability of the Rh-free Co-based ex-hydrotalcite containing Pd in the catalytic decomposition of N2O. Catal Lett 60:133–138

    Article  Google Scholar 

  17. Pérez-Ramírez J, Overeijnder J, Kapteinj F, Moulijn JA (1999) Structural promotion and stabilizing effect of Mg in the catalytic decomposition of nitrous oxide over calcined hydrotalcite-like compounds. Appl. Catal., B 23:59–72

    Article  Google Scholar 

  18. Vichi FM, Alves OL (1997) Preparation of Cd/Al layered double hydroxides and their intercalation reactions with phosphonic acids. J Mater Chem 7:1631–1634

    Article  CAS  Google Scholar 

  19. Fernandez JM, Barriga C, Ulibarri MA, Labajos FM, Rives V (1997) New hydrotalcite-like compounds containing yttrium. Chem Mater 9:312–318

    Article  CAS  Google Scholar 

  20. Armor JN, Braymer TA, Farris TS, Li Y, Petrocelli FP, Weist EL, Kannan S, Swamy CS (1996) Calcined hydrotalcites for the catalytic decomposition of N2O in simulated process streams. Appl Catal, B 7:397–406

    Article  CAS  Google Scholar 

  21. Rousselot I, Taviot-Guého C, Leroux F, Léone P, Palvadeau P, Besse JP (2002) Insights on the structural chemistry of hydrocalumite and hydrotalcite-like materials: investigation of the series Ca2M3+(OH)6Cl·2H2O (M3+: Al3+, Ga3+, Fe3+, and Sc3+) by X-ray powder diffraction. J Solid State Chem 167:137–144

    Article  CAS  Google Scholar 

  22. De Roy A (1998) Lamellar double hydroxides. Mol Cryst Liq Cryst 311:173–193

    Article  Google Scholar 

  23. Crepaldi EL, Pavan PC, Valim JB (2000) Comparative study of the coprecipitation methods for the preparation of layered double hydroxides. J Braz Chem Soc 11:64–70

    Article  CAS  Google Scholar 

  24. Miyata S (1983) Anion-exchanges properties of hydrotalcite-like compounds. Clay Clay Miner 31:305–311

    Article  CAS  Google Scholar 

  25. Kooli F, Chisem IC, Vucelic M, Jones W (1997) Synthesis and properties of terephthalate and benzoate intercalates of Mg-Al layered double hydroxides possessing varying layer charge. Chem Mater 8:1969–1977

    Article  Google Scholar 

  26. Kooli F, Jones W (1996) The incorporation of benzoate and terephthalate anions into layered double hydroxides. In: Synthesis of porous materials: zeolites, clays and nanostructures, vol. 69. Chemical industries. Marcel Dekker, New York, pp. 641–660.

  27. Wang Q, Tang SV, Lester E, O’hare D (2013) Synthesis of ultrafine layered double hydroxide (LDH) nanoplates using a continuous flow hydrothermal reactor. Nanoscale 5:114–117

    Article  CAS  Google Scholar 

  28. Ogawa M, Asai S (2000) Hydrothermal synthesis of layered double hydroxide-deoxycholate intercalation compounds. Chem Mater 12:3253–3255

    Article  CAS  Google Scholar 

  29. Oh JM, Hwang SH, Choy JH (2002) The effect of synthetic conditions on tailoring the size of hydrotalcite particles. Solid State Ionics 151:285–291

    Article  CAS  Google Scholar 

  30. Xie H, Jiao Q-Z, Duan X (2001) Synthesis of hydrotalcite by hydrothermal method. Chin J Appl Chem 18:72–74

    Google Scholar 

  31. Morel-Desrosiers N, Pisson J, Israëli Y, Taviot-Guého C, Besse JP, Morel JP (2003) Intercalation of dicarboxylate anions into a Zn-Al-Cl layered double hydroxide: microcalorimetric determination of the enthalpies of anion exchange. J Mater Chem 13:2582–2585

    Article  CAS  Google Scholar 

  32. Israëli Y, Taviot-Guého C, Besse JP, Morel JP, Morel-Desrosiers N (2000) Thermodynamics of anion exchange on a chloride-intercalated zinc–aluminum layered double hydroxide: a microcalorimetric study. J Chem Soc Dalton Trans 791–796

  33. Bontchev RP, Liu S, Krumhansl JL, Voigt J, Nenoff TM (2003) Synthesis, characterization, and ion exchange properties of hydrotalcite Mg6Al2(OH)16(A)x(A′)2–x4H2O (A, A′ = Cl, Br, I and NO3 , 2 ≥ x ≥ 0) derivaties. Chem Mater 15:3669–3675

    Article  CAS  Google Scholar 

  34. Newman SP, Jones W (1999) Comparative study of some layered hydroxide salts containing exchangeable interlayer anions. J Solid State Chem 148:26–40

    Article  CAS  Google Scholar 

  35. Nakayama H, Wada N, Tsuhako M (2004) Intercalation of amino acids and peptides into Mg-Al layered double hydroxide by reconstruction method. Int J Pharm 269:469–478

    Article  CAS  Google Scholar 

  36. Aisawa S, Hirahara H, Takahashi S, Umetsu Y, Narita E (2004) Stereoselective intercalation of hexose for layered double hydroxide by calcination-rehydration reaction. Chem Lett 33:306–307

    Article  CAS  Google Scholar 

  37. Prinetto F, Ghiotti G, Graffin P, Tichit D (2000) Synthesis and characterization of sol-gel Mg/Al and Ni/Al layered double hydroxides and comparison with co-precipitated samples. Microporous Mesoporous Mater 39:229–247

    Article  CAS  Google Scholar 

  38. Didier T, Olivier L, Bernard C, Federica P, Giovanna G (2005) Synthesis and characterization of Zn/Al and Pt/Zn/Al layered double hydroxides obtained by the sol-gel method. Macroporous Mesoporous Mater 80:213–220

    Article  CAS  Google Scholar 

  39. Livage J, Henry M, Sanchez C (1988) Sol-gel chemistry of transition metal oxides. Prog Solid State Chem 18:259–341

    Article  CAS  Google Scholar 

  40. Rathbone MJ, Hadgraft J, Roberts MS (2003) Modified-release drug delivery technology. Marcel Dekker, New York

    Google Scholar 

  41. Neeraj V, Taehong M, Rhul M, Christopher NB, Steven M, Hong D, Ken-Tye Y, Indrajit R (2010) Development of PEGylated PLGA nanoparticles for controlled and sustained drug delivery in cystic fibrosis. J Nanobiotechnology 8:1–18

    Article  CAS  Google Scholar 

  42. Aguzzi C, Cerezo P, Viseras C, Caramella C (2007) Use of clays as drug delivery systems: possibilities and limitations. Appl Clay Sci 36(1–3):22–36

    Article  CAS  Google Scholar 

  43. Choi S-J, Choy J-H (2011) Layered double hydroxide nanoparticles as target-specific delivery carriers: uptake mechanism and toxicity. Nanomedicine 6:803–814

    Article  CAS  Google Scholar 

  44. Shi W, Wei M, Jin L, Li C (2007) Calcined layered double hydroxides as a “biomolecular vessel” for bromelain: immobilization, storage and release. J. Mol. Catal. B: Enzym 47:58–65

    CAS  Google Scholar 

  45. Williams GR, O’Hare D (2006) Towards understanding, control and application of layered double hydroxide chemistry. J Mater Chem 16:3065–3074

    Article  CAS  Google Scholar 

  46. Choy JH, Choi SJ, Oh JM, Park T (2007) Clays minerals and layered double hydroxides for novel biological applications. Appl Clay Sci 36:122–132

    Article  CAS  Google Scholar 

  47. Khan AI, Lei L, Norquist AJ, O’Hare D (2001) Intercalation and controlled release of pharmaceutically active compounds from a layered double hydroxide. Chem Commun 2342–2343

  48. Wei M, Shi S, Wang J, Li Y, Duan X (2004) Studies on the intercalation of naproxen into layered double hydroxide and its thermal decomposition by in situ FT-IR and in situ HT-XRD. J Solid State Chem 177:2534–2541

    Article  CAS  Google Scholar 

  49. Del Arco M, Cebadera E, Gutierrez S, Martin C, Montero MJ, Rives V, Rocha J, Sevilla MA (2004) Mg,Al layered double hydroxides with intercalated indomethacin: synthesis, characterization and pharmacological study. J Pharm Sci 93:1649–1658

    Article  CAS  Google Scholar 

  50. Li B, He J, Evans DG, Duan X (2004) Inorganic layered double hydroxides as a drug delivery system-intercalation and in vitro release of fenbufen. Appl Clay Sci 27:199–207

    Article  CAS  Google Scholar 

  51. Saifullah B, Hussein MZ, Hussein-Al-Ali SH, Arulselvan P, Fakurazi S (2013) Sustained release formulation of an anti-tuberculosis drug based on para-amino salicylic acid-zinc layered hydroxide nanocomposite. Chem Cent J 7(1):72

    Article  CAS  Google Scholar 

  52. Park T, Choi SJ, Oh JM, Jung JS (2010) Injectable drug carrier comprising layered double hydroxide. U.S. Patent 0276170A1

  53. Valeria A, Giuseppe F, Giuliano G, Luana P (2001) Intercalation compounds of hydrotalcite-like anionic clays with anti-inflammatory agents—I. Intercalation and in vitro release of ibuprofen. Int J Pharm 220:23–32

    Article  Google Scholar 

  54. Poernomo G, Rong X (2008) Direct control of drug release behavior from layered double hydroxides through particle interactions. J Pharm Sci 97:4367–4378

    Article  CAS  Google Scholar 

  55. Valeria A, Giuseppe F, Giuliano G, Luana P, Maria CT (2002) Intercalation compounds of hydrotalcite-like anionic clays with anti-inflammatory agents. II. Uptake of diclofenac for a controlled release formulation. AAPS Pharm SciTech 3:1–6

    Google Scholar 

  56. Del Acro M, Gutierrez S, Martin C, Rives V, Rocha J (2004) Synthesis and characterization of layered double hydroxides (LDH) intercalated with non-steroidal anti-inflammatory drugs (NSAID). J Solid State Chem 177:3954–3962

    Article  CAS  Google Scholar 

  57. Wan-Guo H, Zhi-Lin J (2007) Synthesis and characterization of naproxen intercalated Zn–Al layered double hydroxides. Colloid Polym Sci 285:1449–1454

    Article  CAS  Google Scholar 

  58. Park M-C, Kim H, Park D-H, Yang J-H, Choy J-H (2012) Keteprofen-LDH nanohybrid for transdermal drug delivery system. Bull Kor Chem Soc 33(6):1827–1828

    Article  CAS  Google Scholar 

  59. Silion M, Hritcu D, Jaba IM, Tamba B, Ionescu D, Mungiu OC, Popa IM (2010) In vitro and in vivo behavior of ketoprofen intercalated into layered double hydroxides. J Mater Sci - Mater Med 21:3009–3018

    Article  CAS  Google Scholar 

  60. Li F, Jin L, Han J, Wei M, Li C (2009) Synthesis and controlled release properties of prednisone intercalated Mg-Al layered double hydroxide composite. Ind Eng Chem Res 48:5590–5597

    Article  CAS  Google Scholar 

  61. Zhang H, Zou K, Sun H, Duan X (2005) A magnetic organic-inorganic composite: synthesis and characterization of magnetic 5-aminosalicylic acid intercalated layered double hydroxides. J Solid State Chem 178(11):3485–3493

    Article  CAS  Google Scholar 

  62. Ping G, Xin N, Meijuan Z, Yijie S, Gang C (2011) Recent advances in materials for extended-release antibiotic delivery system. J Antibiot 64:625–634

    Article  CAS  Google Scholar 

  63. Ryu S-J, Jung H, Oh J-M, Lee J-K, Choy J-H (2010) Layered double hydroxide as novel antibacterial drug delivery system. J Phys Chem Solids 71:685–688

    Article  CAS  Google Scholar 

  64. Wang J, Liu Q, Zhang G, Li Z, Yang P, Jing X, Zhang M, Liu T, Jiang Z (2009) Synthesis, sustained release properties of magnetically functionalized organic-inorganic materials: amoxicillin anions intercalated magnetic layered double hydroxides via calcined precursors at room temperature. Solid State Sci 11:1597–1601

    Article  CAS  Google Scholar 

  65. Valeria B, Giuliana G, Francesca M, Morena N, Loredana T, Vittoria V (2011) Modified layered double hydroxides in polycaprolactone as a tunable delivery system: in vitro release of antimicrobial benzoate derivatives. Appl Clay Sci 52:34–40

    Article  CAS  Google Scholar 

  66. Wosikowski K, Biedermann E, Rattel B, Breiter N, Jank P, Loser R, Jansen G, Peters GJ (2003) In vitro and in vivo antitumor activity of methotrexate conjugated to human serum albumin in human cancer cells. Clin Cancer Res 9:1917–1926

    CAS  Google Scholar 

  67. Balis FM, Savitch JL, Bleyer WA, Reaman GH, Poplack DG (1985) Remission induction of meningeal leukemia with high-dose intravenous methotrexate. J Clin Oncol 3:485–490

    Article  CAS  Google Scholar 

  68. Kim HS, Park YB, Oh JH, Yoo KH, Lee SH (2001) The cytotoxic effect of methotrexate loaded bone cement on osteosarcoma cell lines. Int Orthop 25:343–348

    Article  CAS  Google Scholar 

  69. Widemann BC, Balis FM, Kim A, Boron M, Jayaprakash N, Shalabi A, O'Brien M, Eby M, Cole DE, Murphy RF, Fox E, Ivy P, Adamson PC (2010) Glucarpidase, leucovorin, and thymidine for high-dose methotrexate-induced renal dysfunction: clinical and pharmacologic factors affecting outcome. J Clin Oncol 28:3979–3986

    Article  CAS  Google Scholar 

  70. Chakraborty M, Dasgupta S, Bose P, Misra A, Mandal TK, Mitra M, Chakraborty J, Basu D (2011) Layered double hydroxide: inorganic organic conjugate nanocarrier for methotrexate. J Phys Chem Solids 72:779–783

    Article  CAS  Google Scholar 

  71. Chakraborty M, Dasgupta S, Soundrapandian C, Chakraborty J, Ghosh S, Mitra MK, Basu D (2011) Methotrexate intercalated ZnAl-layered double hydroxide. J Solid State Chem 184:2439–2445

    Article  CAS  Google Scholar 

  72. Chakraborty M, Dasgupta S, Sengupta S, Chakraborty J, Ghosh S, Ghosh J, Mitra MK, Mishra A, Mandal TK, Basu D (2012) A facile synthetic strategy for Mg–Al layered double hydroxide material as nanocarrier for methotrexate. Ceram Int 38:941–949

    Article  CAS  Google Scholar 

  73. Chakraborty J, Roychowdhury S, Sengupta S, Ghosh S (2013) Mg–Al layered double hydroxide-methotrexate nanohybrid drug delivery system: evaluation of efficacy. Mater Sci Eng C 33:2168–2174

    Article  CAS  Google Scholar 

  74. Yan L, Chen W, Zhu XY, Huang LB, Wang ZG, Zhu GY, Roy VAL, Yu KN, Chen XF (2013) Folic acid conjugated self-assembled layered double hydroxide nanoparticles for high-efficacy-targeted drug delivery. Chem Commun 49:10938–10940

    Article  CAS  Google Scholar 

  75. Barahuie F, Hussein MZ, Arulselvan P, Fakurazi S, Zainal Z (2016) Controlled in vitro release of the anticancer drug chlorogenic acid using magnesium/aluminium-layered double hydroxide as a nanomatrix. Sci Adv Mater 8(3):501–513

    Article  CAS  Google Scholar 

  76. Wang Z, Wang E, Gao L, Xu L (2005) Synthesis and properties of Mg2Al layered double hydroxides containing 5-fluorouracil. J Solid State Chem 178:736–741

    Article  CAS  Google Scholar 

  77. Gasser MS (2009) Inorganic layered double hydroxides as ascorbic acid (vitamin C) delivery system-intercalation and their controlled release properties. Colloids Surf, B 73:103–109

    Article  CAS  Google Scholar 

  78. Gao X, Lei L, O'Hare D, Xie J, Gao P, Chang T (2013) Intercalation and controlled release properties of vitamin C intercalated layered double hydroxide. J Solid State Chem 203:174–180

    Article  CAS  Google Scholar 

  79. Choy J-H, Son Y-H (2004) Intercalation of Vitamer into LDH and their controlled release properties. Bull Kor Chem Soc 25:122–126

    Article  CAS  Google Scholar 

  80. Sheng JX, Zhe MN, Qian X, Bao XH, Jun H (2008) Layered double hydroxides as support for intercalation and sustained release of antihypertensive drugs. J Solid State Chem 181:2610–2619

    Article  CAS  Google Scholar 

  81. Ribeiro C, Arizaga GGC, Wypych F, Sierakowski MR (2009) Nanocomposites coated with xyloglucan for drug delivery: in vitro studies. Int J Pharm 367:204–210

    Article  CAS  Google Scholar 

  82. Zhang H, Zou K, Guo S, Duan X (2006) Nanostructural drug-inorganic clay composites: structure, thermal property and in vitro release of captopril-intercalated Mg-Al-layered double hydroxides. J Solid State Chem 179:1792–1801

    Article  CAS  Google Scholar 

  83. Qin L, Wang W, You S, Dong J, Zhou Y, Wang J (2014) In vitro antioxidant activity and in vivo antifatigue effect of layered double hydroxide nanoparticles as delivery vehicles for folic acid. Int J Nanomedicine 9:5701–5710

    Article  CAS  Google Scholar 

  84. Nuruzzaman M, Rahman MM, Liu Y, Naidu R (2016) Nanoencapsulation, nano-guard for pesticides: a new window for safe application. J Agric Food Chem 64:1447–1483

    Article  CAS  Google Scholar 

  85. Li F, Zhang L, Evans DG, Forano C, Duan X (2004) Structure and thermal evolution of Mg–Al layered double hydroxide containing interlayer organic glyphosate anions. Thermochimi Acta 424:15–23

    Article  CAS  Google Scholar 

  86. Combourieu B, Inacio J, Delort AM, Forano C (2001) Differentiation of mobile and immobile pesticides on anionic clays by 1H HR MAS NMR spectroscopy. Chem Commun 2214–2215

  87. Hashim N, Hussein MZ, Isa IM, Kamari A, Mohamed A, Jaafar AM, Taha H (2014) Synthesis and controlled release of cloprop herbicides from cloprop-layered double hydroxide and cloprop-zinc-layered hydroxide nanocomposites. Open Journal of Inorganic Chemistry 4:1–9

    Article  CAS  Google Scholar 

  88. Hussein MZ, Hashim N, Yahaya AH, Zainal Z (2010) Synthesis of an herbicides-inorganic nanohybrid compound by ion exchange-intercalation of 3(2-chlorophenoxy) propionate into layered double hydroxide. J Exp Nanosci 5:548–558

    Article  CAS  Google Scholar 

  89. Hussein MZ, Yahaya AH, Zainal Z, Kian LH (2005) Nanocomposite-based controlled release formulation of an herbicide, 2,4-dichlorophenoxyacetate encapsulated in zinc–aluminium-layered double hydroxide. Sci Technol Adv Mater 6:956–962

    Article  CAS  Google Scholar 

  90. Hussein MZ, Jaafar AM, Yahaya AH, Zainal Z (2009) The effect of single, binary and ternary anions of chloride, carbonate and phosphate on the release of 2,4 dichlorophenoxyacetate intercalated into the Zn-Al layered double hydroxide nanohybrid. Nanoscale Res Lett 4:1351–1357

    Article  CAS  Google Scholar 

  91. Lucelena PC, Rafael C, Juan C, João BV (2006) Layered double hydroxides as supports for the slow release of acid herbicides. J Agric Food Chem 54:5968–5975

    Article  CAS  Google Scholar 

  92. Eleftherios T, Asimina M, Demetrios FG (2011) Intercalation of the herbicide atrazine in layered double hydroxides for controlled-release applications. Pest Manag Sci 67:837–841

    Article  CAS  Google Scholar 

  93. Hussein MZ, Zainal Z, Yahaya AH, Foo DW (2002) Controlled release of a plant growth regulator, alpha-naphthaleneacetate from the lamella of Zn-Al-layered double hydroxides nanocomposite. J Control Release 82:417–427

    Article  Google Scholar 

  94. Ahmad R, Hussein MZ, Kadir WRWA, Sarijo SH, Hin T-YY (2015) Evaluation of controlled-release property and phytotoxicity effect of insect pheromone zinc-layered hydroxide nanohybrid intercalated with hexenoic acid. J Agric Food Chem 63:10893–10902

    Article  CAS  Google Scholar 

  95. Park M, Lee CI, Seo YJ, Woo SR, Shin D, Choi J (2010) Hybridization of the natural antibiotic, cinnamic acid, with layered double hydroxides (LDH) as green pesticide. Environ Sci Pollut Res 17:203–209

    Article  CAS  Google Scholar 

  96. Duan X, Evans DG, Zhang H, Meng J (2005) Study of the supramolecular structure of sorbic acid intercalated Zn-Al layered double hydroxide and its thermal decomposition. Chin Sci Bull 50:2575–2581

    Google Scholar 

  97. Chen C, Wang P, Liem T, Liu L, Liu S, Xu R (2013) A facile synthesis of monodispersed hierarchical layered double hydroxide on silica spheres for efficient removal of pharmaceuticals. J Mater Chem A 1:3877–3880

    Article  CAS  Google Scholar 

  98. Tan SJ, Kiatwuthinon P, Roh YH, Kahn JS, Luo D (2011) Engineering nanocarriers for siRNA delivery. Small 7:841–856

    Article  CAS  Google Scholar 

  99. Ladewig K, Niebert M, Xu ZP, Gray PP, Lu GQ(M) (2010) Controlled preparation of layered double hydroxide nanoparticles and their application as gene delivery vehicles. Appl Clay Sci 48(1–2):280–289

    Article  CAS  Google Scholar 

  100. Ladewig K, Niebert M, Xu ZP, Gray PP, Lu GQ(M) (2009) Efficient siRNA delivery to mammalian cells using layered double hydroxide nanoparticles. Biomaterials 31(7):1821–1829

    Article  CAS  Google Scholar 

  101. Chen M, Cooper HM, Zhou JZ, Bartlett PF, Xu ZP (2013) Reduction in the size of layered double hydroxide nanoparticles enhances the efficiency of siRNA delivery. J Colloid Interface Sci 390:275–281

    Article  CAS  Google Scholar 

  102. Li L, Gu W, Liu J, Yan S, Xu ZP (2015) Amine-functionalized SiO2 nanodot-coated layered double hydroxide nanocomposites for enhanced gene delivery. Nano Res 8:682

    Article  CAS  Google Scholar 

  103. Greenblatt GD, Hughes L, Whitman DW (2004) Polymer-clay nanocomposite for extended release of active ingredient. Eur Patent 1470823

  104. Ha CS, Gardelle JA (2005) Surface chemistry of biodegradable polymers for drug delivery systems. Chem Rev 105:4205–4232

    Article  CAS  Google Scholar 

  105. Colombo P, Bettini R, Santi P, De Ascentiis A, Peppas NA (1996) Analysis of the swelling and release mechanisms from drug delivery systems with emphasis on drug solubility and water transport. J Control Release 39:231–237

    Article  CAS  Google Scholar 

  106. Li B, He J, Evans DG, Duan X (2004) Enteric-coated layered double hydroxides as a controlled release drug delivery system. Int J Pharm 287:89–95

    Article  CAS  Google Scholar 

  107. Ribeiro LNM, Alcantara ACS, Darder M, Aranda P, Araujo-Moreira FM, Ruiz-Hitzky E (2014) Pectin coated chitosan-LDH bionanocomposite beads as potential systems for colon-targeted drug delivery. Int J Pharm 463:1–9

    Article  CAS  Google Scholar 

  108. Tammaro L, Costantino U, Nocchetti M, Vittoria V (2009) Incorporation of active nano-hybrids into poly(ε-capolactone) for local controlled release: antifibrinolytic drug. Appl Clay Sci 43:350–356

    Article  CAS  Google Scholar 

  109. Barkhordari S, Yadollahi M (2016) Carboxymethyl cellulose capsulated layered double hydroxides/drug nanohybrids for cephalexin oral delivery. Appl Clay Sci 121–122:77–85

    Article  CAS  Google Scholar 

  110. Deleon VH, Nguyen TD, Nar M, D’Souza NA, Golden TD (2012) Polymer nanocomposites for improved drug delivery efficiency. Mater Chem Phys 132:409–415

    Article  CAS  Google Scholar 

  111. Ambrogi V, Perioli L, Ricci M, Pulcini L, Nocchetti M, Giovagnoli S, Rossi C (2008) Eudragit and hydrotalcite-like anionic clay composite system for diclofenac colonic delivery. Microporous Mesoporous Mater 115:405–415

    Article  CAS  Google Scholar 

  112. Román MSS, Holgado MJ, Salinas B, Rives V (2013) Drug release from layered double hydroxides and from their polylactic acid (PLA) nanocomposites. Appl Clay Sci 71:1–7

    Article  CAS  Google Scholar 

  113. Kura AU, Hussein-Al-Ali SH, Hussein MZ, Fakurazi S (2014) Preparation of tween 80-Zn/Al-levodopa-layered double hydroxides nanocomposite for drug delivery system. Sci World J 1–10

  114. Van VLE, Vyas TK, Amiji MM (2007) Poly(ethylene glycol)-modified nanocarriers for tumor-targeted and intracellular delivery. Pharm Res 24:1405–1414

    Article  CAS  Google Scholar 

  115. Owens DE, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307:93–102

    Article  CAS  Google Scholar 

  116. Dongxiang L, Xinjie X, Jie X, Wanguo H (2011) Poly(ethylene glycol) haired layered double hydroxides as biocompatible nanovehicles: morphology and dispersity study. Colloids Surf, A: Physicochem Eng Aspects 384:585–591

    Article  CAS  Google Scholar 

  117. Alcântara ACS, Aranda P, Darder M, Ruiz-Hitzky E (2010) Bionanocomposites based on alginate-zein/layered double hydroxide materials as drug delivery systems. J Mater Chem 20:9495–9504

    Article  CAS  Google Scholar 

  118. Dong L, Gou G, Jiao L (2013) Characterization of a dextran-coated layered double hydroxide acetylsalicylic acid delivery system and its pharmacokinetics in rabbit. Acta Pharm Sin B 3:400–407

    Article  Google Scholar 

  119. Dagnon KL, Ambadapadi S, Shaito A, Ogbomo SM, Deleon V, Golden TD, Rahimi M, Nguyen K, Braterman PS, D’Souza NA (2009) Poly(L-lactic acid) nanocomposites with layered double hydroxides functionalized with ibuprofen. J Appl Poly Sci 113:1905–1915

    Article  CAS  Google Scholar 

  120. Chakarborti M, Jackson JK, Plackett D, Gilchrist SE, Burt HM (2012) The application of layered double hydroxide clay (LDH)-poly(lactide-co-glycolic acid) (PLGA) film composites for the controlled release of antibiotics. J Mater Sci Mater Med 23:1705–1713

    Article  CAS  Google Scholar 

  121. Tuncelli G, Ay AN, Zumreoglu-Karan B (2015) 5-fluorouracil intercalated iron@layered double hydroxide core-shell nano-composites with isotropic and anisotropic architectures for shape-selective drug delivery applications. Mater Sci Eng, C 55:562–568

    Article  CAS  Google Scholar 

  122. Kuo Y-M, Kuthati Y, Kankala RK, Wei P-R, Weng C-F, Liu C-L, Sung P-J, Mou C-Y, Lee C-H (2015) Layered double hydroxide nanoparticles to enhance organ-specific targeting and the anti-proliferative effect of cisplatin. J Mater Chem B 3:3447–3458

    Article  CAS  Google Scholar 

  123. Li D, Zhang Y-T, Yu M, Guo J, Chaudhary D, Wang C-C (2013) Cancer therapy and fluorescence imaging using the active release doxorubicin from MSPs/Ni-LDH folate targeting nanoparticles. Biomaterials 34:7913–7922

    Article  CAS  Google Scholar 

  124. Senapati S, Thakur R, Verma SP, Duggal S, Mishra DP, Das P, Shripathi T, Kumar M, Rana D, Maiti P (2016) Layered double hydroxides as effective carrier for anticancer drugs and tailoring of release rate through interlayer anions. J. Controlled Release 224:186–198

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Dr. D. Ramaiah, Director, Council of Scientific and Industrial Research-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, for his kind permission to publish this work. We express our heartfelt thanks to Dr. P. Sengupta, Head of Materials Science and Technology Division for support. We also acknowledge the support obtained from CSIR Network project CSC-104 for funding the facilities and infrastructures of the work. N.B.A. acknowledges CSIR-India and The World Academy of Sciences (TWAS)-Italy, for a CSIR-TWAS fellowship (FR number 3240280453) award for postgraduate studies at CSIR-NEIST, Jorhat. Authors RLG, PS, and AB received salary from CSIR India (Project No CSC-104), while the salary for the first author Allou Nguadi Blaise was received from a scholarship from CSIR-TWAS collaborative scheme (TWAS ref. no. 3240280453).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajib Lochan Goswamee.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allou, N.B., Saikia, P., Borah, A. et al. Hybrid nanocomposites of layered double hydroxides: an update of their biological applications and future prospects. Colloid Polym Sci 295, 725–747 (2017). https://doi.org/10.1007/s00396-017-4047-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-017-4047-3

Keywords

Navigation