Skip to main content
Log in

Suspension polymerization of thermally expandable microspheres using low-temperature initiators

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Thermally expandable microspheres were prepared by suspension polymerization using low-temperature initiators. The copolymer shells were made from acrylonitrile (AN) and methyl methacrylate (MMA) as the major monomers. Methacrylonitrile (MAN) was used as the third monomer to improve the expansion performance of the microspheres. This study investigated the influences of the initiator species, polymerization temperature, initiator content, and polymerization pressure on the expansion performance. Stable expandable microcapsules and good thermal characteristics were obtained successfully using 1.5 wt% azobis(4-methoxy-2.4- dimethyl valeronitrile) (V-70) as an initiator at a low temperature of 35 °C and at polymerization pressure of 3 bar. The resulting particle size without destruction and secondary nucleation showed a mean diameter of 30 μm under the optimal conditions. The encapsulated contents of the blowing agent were confirmed by thermogravimetric analysis (TGA) to be 40%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kawaguchi Y, Oishi T (2004) Synthesis and properties of thermoplastic expandable microspheres: the relationship between crosslinking density and expandable property. J Appl Polym Sci 93:505–512

    Article  CAS  Google Scholar 

  2. Vamvounis G, Jonsson M, Malmstrom E, Hult A (2013) Synthesis and properties of poly (3-n-dodecylthiophene) modified thermally expandable microspheres. Eur Polym J 49:1503–1509

    Article  CAS  Google Scholar 

  3. Kawaguchi Y, Itamura Y, Onimura K, Oishi T (2005) Effect of the chemical structure on the heat resistance of thermoplastic expandable microspheres. J Appl Polym Sci 96:1306–1312

    Article  CAS  Google Scholar 

  4. Jonsson M, Nordin O, Kron AL, Malmstrom E (2010) Influence of crosslinking on the characteristics of thermally expandable microspheres expanding at high temperature. J Appl Polym Sci 118:1219–1229

    CAS  Google Scholar 

  5. Jonsson M, Nordin O, Malmstrom E (2011) Increased onset temperature of expansion in thermally expandable microspheres through combination of crosslinking agents. J Appl Polym Sci 121:369–375

    Article  CAS  Google Scholar 

  6. Jonsson M, Nordin O, Malmstrom E, Hammer C (2006) Suspension polymerization of thermally expandable core/shell particles. Polymer 47:3315–3324

    Article  CAS  Google Scholar 

  7. Jonsson M, Nystrom D, Nordin O, Malmstrom E (2009) Surface modification of thermally expandable microspheres by grafting poly (glycidyl methacrylate) using ARGET ATRP. Eur Polym J 45:2374–2382

    Article  CAS  Google Scholar 

  8. Jonsson M, Nordin O, Kron AL, Malmstrom E (2010) Thermally expandable microspheres with excellent expansion characteristics at high temperature. J Appl Polym Sci 117:384–392

    CAS  Google Scholar 

  9. Kawaguchi Y, Ito D, Kosaka Y, Okudo M, Nakachi T, Kake H, Kim JK, Shikuma H, Ohshima M (2009) Thermally expandable microcapsules for polymer foaming-relationship between expandability and viscoelasticity. Wiley InterSci

  10. Zhen ZH, Wang ZS (2013) Microcapsule particle size and size distribution and its influencing factors. Adv Mater Res 746:118–122

    Article  Google Scholar 

  11. Islam MS, Yeum JH, Das AK (2012) Synthesis of poly (vinyl acetate-methyl methacrylate) copolymer microspheres using suspension polymerization. J Colloid Interface Sci 368:400–405

    Article  CAS  Google Scholar 

  12. Lanza F, Hall AJ, Sellergren B, Bereczki A, Horvai G, Bayoudh S, Cormack PAG, Sherrington DC (2001) Development of a semiautomated procedure for the synthesis and evaluation of molecularly imprinted polymers applied to the search for functional monomers for phenytoin and nifedipine. Anal Chim Acta 435:91–106

    Article  CAS  Google Scholar 

  13. Barrett KEJ (1967) Determination of rates of thermal decomposition of polymerization initiators with a differential scanning calorimeter. J Appl Polym Sci 11:1617–1626

    Article  CAS  Google Scholar 

  14. Masere J, Chekanov Y, Warren JR, Stewart FD, Al-Kaysi R, Rasmussen JK, Pojman JA (2000) Gas-free initiators for high-temperature free-radical polymerization. J Polym Sci 38:3984–3990

    Article  CAS  Google Scholar 

  15. Kohut-Svelko N, Pirri R, Asua JM, Leiza JR (2009) Redox initiator systems for emulsion polymerization of acrylates. J Polym Sci 47:2917–2927

    Article  CAS  Google Scholar 

  16. Li W, Song G, Tang G, Chu X, Ma S, Liu C (2011) Morphology, structure and thermal stability of microencapsulated phase change material with copolymer shell. Energy 36:785–791

    Article  CAS  Google Scholar 

  17. Ma GH, Sone H, Omi S (2004) Preparation of uniform-sized polystyrene-polyacrylamide composite microspheres from a W/O/W emulsion by membrane emulsification technique and subsequent suspension polymerization. Macromolecules 37:2954–2964

    Article  CAS  Google Scholar 

  18. Ma GH, Omi S, Dimonie VL, Sudol ED, El-Aasser MS (2002) Study of the preparation and mechanism of formation of hollow monodisperse polystyrene microspheres by SPG (Shirasu Porous Glass) emulsification technique. J Appl Polym Sci 85:1530–1543

    Article  CAS  Google Scholar 

  19. Kim JG, Ha JU, Jeoung SK, Lee KS, Baeck SH, Shim SE (2015) Halloysite nanotubes as a stabilizer: fabrication of thermally expandable microcapsules via Pickering suspension polymerization. Colloid Polym Sci 293:3595–3602

    Article  CAS  Google Scholar 

  20. Jahanzad F, Sajjadi S, Brooks B (2013) Suspension polymerization in the presence of an initiator; prolonged transition stage and suppressed emulsion particle formation. Polymer 54:16–23

    Article  CAS  Google Scholar 

  21. Kim JW, Suh KD (2000) Monodisperse micron-sized polystyrene particles by seeded polymerization: effect of seed crosslinking on monomer swelling and particle morphology. Polymer 41:6181–6188

    Article  CAS  Google Scholar 

  22. Sanchez-Silva L, Rodriguez JF, Carmona M, Romero A, Sanchez P (2011) Thermal and morphological stability of polystyrene microcapsules containing phase-change materials. J Appl Polym 120:291–297

    Article  CAS  Google Scholar 

  23. Allen SM, Fufii M, Stannett V, Hopfenberg HB, Willians JL (1977) The barrier properties of polyacrylonitrile. J Membr Sci 2:153–164

    Article  CAS  Google Scholar 

  24. Hou ZS, Kan CY (2014) Preparation and properties of thermoexpandable polymeric microspheres. Chines Chem Lett 25:1279–1281

    Article  CAS  Google Scholar 

  25. Lin HR (2001) Solution polymerization of acrylamide using potassium persulfate as an initiator: kinetic studies, temperature and pH dependence. Eur Polym J 37:1507–1510

    Article  CAS  Google Scholar 

  26. Goto A, Fukuda T (1997) Effects of radical initiator on polymerization rate and polydispersity in nitroxide-controlled free radical polymerization. Macromolecules 30:4272–4277

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant (10045051) from Korea Ministry of Trade, Industry and Energy (MOTIE), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Eun Shim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rheem, M.J., Jung, H., Ha, J. et al. Suspension polymerization of thermally expandable microspheres using low-temperature initiators. Colloid Polym Sci 295, 171–180 (2017). https://doi.org/10.1007/s00396-016-3993-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-016-3993-5

Keywords

Navigation