Skip to main content
Log in

Aqueous phase synthesis of silver iodide nanoparticles from a polyacrylic acid–silver complex

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The conditions needed to form a complex of polyacrylic acid with silver ions (Ag+) in aqueous solution were investigated. Ag+ formed a complex with the dissociated carboxyl units of polyacrylic acid. It was found that the complex of polyacrylic acid with silver ions formed by disproportionation of Ag+ on polyacrylic acid macromolecules. When Ag+ and H+ coexisted in solution, the negatively charged carboxyl groups of polyacrylic acid preferentially interacted with H+. The size characteristics of the polyacrylic acid macromolecular coils and polyacrylic acid–silver complex and their volume ratio were investigated in solution. Silver iodide nanoparticles were synthesized under conditions where Ag+ formed a complex with polyacrylic acid, and when they were dispersed in bulk solution. The products were characterized by transmission electronic microscopy. The presence of the polyelectrolyte–silver complex as a precursor yielded silver iodide nanoparticles of smaller size and narrower size distribution, than those formed in the absence of the polyelectrolyte–silver complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme I
Scheme II
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Litmanovich OE, Papisov IM, Eliseeva EA (2007) Effect of stability of nanosized catalyst-polymer substrate complex on hydrolysis of poly(N-vinylpyrrolidone) in copper sols. PolySci Ser A 49:1093–1098. doi:10.1134/S0965545X07100057

    Article  Google Scholar 

  2. Pereira SO, Barros-Timmons A, Trindade T (2014) Biofunctionalisation of colloidal gold nanoparticles via polyelectrolytes assemblies. Colloid Polym Sci 292:33–50. doi:10.1007/s00396-013-3037-3

    Article  CAS  Google Scholar 

  3. Kalia S, Kango S, Kumar A, Haldorai Y, Kumari B, Kumar R (2014) Magnetic polymer nanocomposites for environmental and biomedical applications. Colloid Polym Sci 292:2025–2052. doi:10.1007/s00396-014-3357-y

    Article  CAS  Google Scholar 

  4. Yang LQ, Hao MM, Wang HY, Zhang Y (2015) Amphiphilic polymer-Ag composite microgels with tunable catalytic activity and selectivity. Colloid Polym Sci 293:2405–2417. doi:10.1007/s00396-015-3642-4

    Article  CAS  Google Scholar 

  5. Tokarev V, Shevchuk O, Ilchuk H, Tokarev S, Kusnezh V, Korbutyak D, Budzulyak S, Kalytchuk S, Bukartyk N (2015) Thin polymer films with embedded CdS nanocrystals. Colloid Polym Sci 293:1159–1169. doi:10.1007/s00396-015-3500-4

    Article  CAS  Google Scholar 

  6. Zhu Y, Liu H, Yang L, Liu J (2012) Study on the synthesis of Ag/AgCl nanoparticles and their photocatalytic properties. Mater Res Bull 47:3452–3458. doi:10.1016/j.materresbull.2012.07.005

    Article  CAS  Google Scholar 

  7. Zeng C, Tian B, Zhang J (2013) Silver halide/silver iodide@silver composite with excellent visible light photocatalytic activity for methyl orange degradation. J Colloid and Interf Sci 405:17–21. doi:10.1016/j.jcis.2013.05.009

    Article  CAS  Google Scholar 

  8. Kumar DA, Palanichamy V, Roopan SM (2014) Photocatalytic action of AgCl nanoparticles and its antibacterial activity. J Photoch Photobio B138:302–306. doi:10.1016/j.jphotobiol.2014.06.011

    Article  Google Scholar 

  9. Pillai V, Kumar P, Hou MJ, Ayyub P, Shah DO (1995) Preparation of nanoparticles of silver halides, superconductors and magnetic materials using water-in-oil microemulsions as nano-reactors. Adv Colloid Interfac 55:241–269. doi:10.1016/0001-8686(94)00227-4

    Article  CAS  Google Scholar 

  10. Wu L, Wang T, Xiang W (2013) Regulation of AgCl in reverse microemulsion and its effect on the performance of AgCl/PEO–PPO–PEO/PMMA hybrid membranes. Compos Sci Technol 80:8–15. doi:10.1016/j.compscitech.2013.02.023

    Article  CAS  Google Scholar 

  11. Bai J, Li Y, Li M, Gao J, Zhang X, Wang S, Zhang C, Yang Q (2008) A novel approach to prepare AgCl/PVP nanocomposite microspheres via electrospinning with sol–gel method. Colloid Surface A 318:259–262. doi:10.1016/j.colsurfa.2007.12.055

    Article  CAS  Google Scholar 

  12. Majumder S, Naskar B, Ghosh S, Lee CH, Chang CH, Moulik SP, Panda AK (2014) Synthesis and characterization of surfactant stabilized nanocolloidal dispersion of silver chloride in aqueous medium. Colloid Surface A 443:156–163. doi:10.1016/j.colsurfa.2013.10.064

    Article  CAS  Google Scholar 

  13. Gupta VKN, Mehra A, Thaokar R (2012) Worm-like micelles as templates: formation of anisotropic silver halide nanoparticles. Colloid Surface A393:73–80. doi:10.1016/j.colsurfa.2011.11.003

    Article  Google Scholar 

  14. Noritomi H, Igari N, Kagitani K, Umezawa Y, Muratsubaki Y, Kato S (2010) Synthesis and size control of silver nanoparticles using reverse micelles of sucrose fatty acid esters. Colloid Polym Sci 288:887–891. doi:10.1007/s00396-010-2214-x

    Article  CAS  Google Scholar 

  15. Liao J, Zhang K, Wang L, Wan W, Wang Y, Xiao J, Yu L (2012) Facile hydrothermal synthesis of heart-like Ag@AgCl with enhanced visible light photocatalytic performance. Mater Lett 83:136. doi:10.1016/j.matlet.2012.06.017

    Article  CAS  Google Scholar 

  16. Hirai H, Nakao Y, Toshima N (1978) Preparation of colloidal rhodium in poly(vinyl alcohol) by reduction with methanol. J Macromol Sci Chem 12:1117–1141. doi:10.1080/00222337808063179

    Article  Google Scholar 

  17. Hirai H, Nakao Y, Toshima N (1979) Preparation of colloidal transition metals in polymers by reduction with alcohols or ethers. J Macromol Sci Chem 13:727–750. doi:10.1080/00222337908056685

    Article  CAS  Google Scholar 

  18. Hirai H, Yakura N (2001) Protecting polymers in suspension of metal nanoparticles. Polym Advan Technol 12:724–733. doi:10.1002/pat.95

    Article  CAS  Google Scholar 

  19. Litmanovich OE, Litmanovich AA, Papisov IM (2007) Limiting stability temperatures for copper sols stabilized by poly(N-vinyllactams). Polym Sci, Ser A 49:450–455. doi:10.1134/S0965545X07040128

    Article  Google Scholar 

  20. Litmanovich OE, Litmanovich AA, Papisov IM (1997) Formation of polymer-metal nanocomposites by the reduction of bivalent copper complexes with poly(ethylenimine). Polym Sci Ser A 39:1028–1032

    Google Scholar 

  21. Papisov IM (1997) Matrix polymerization and other matrix and pseudomatrix processes as a method to obtain composite materials. Polym Sci Ser B+ 39:122–133

    Google Scholar 

  22. Litmanovich OE, Papisov IM (1999) Effect of the length of macromolecules on the dimensions of metal particles reduced in a polymer solution. Polym Sci Ser A 41:1169–1174

    Google Scholar 

  23. Litmanovich OE, Marmuzov GV, Eliseeva EA, Litmanovich AA, Papisov IM (2002) Effect of interaction between polyelectrolyte macromolecules and metal nanoparticles on the formation and properties of a polymer-metal nanocomposite sol. Polym Sci Ser A 44:609–614

    Google Scholar 

  24. Netz RR, Joanny JF (1999) Complexation between a semiflexible polyelectrolyte and oppositely charged sphere. Macromolecules 32:9026–9040. doi:10.1021/ma990264+

    Article  CAS  Google Scholar 

  25. Kiryukhin MV, Sergeev BM, Prusov AN, Sergeev VG (2000) Formation of nonspherical silver nanoparticles by the photochemical reduction of silver cations in the presence of a partially decarboxylated poly(acrylic acid). Polym Sci Ser B+ 42:324–328

    Google Scholar 

  26. Bijeswerbosch BH, Lyklema J (1978) Interfacial electrochemistry of silver iodide. Adv Colloid Interfac 9:147–251. doi:10.1016/0001-8686(87)80005-2

    Article  Google Scholar 

  27. Strauss UP, Begala AJ (1980) Cooperative silver ion binding by synthetic polycarboxylic acids. ACS Symp Ser 187:327–336. doi:10.1021/ba-1980-0187.ch021

    CAS  Google Scholar 

  28. Ershov BG, Henglein A (1998) Reduction of Ag + on polyacrylate chains in aqueous solution. J Phys Chem B 102:10663–10666. doi:10.1021/jp981906i

    Article  CAS  Google Scholar 

  29. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. doi:10.1038/nmeth.2089

    Article  CAS  Google Scholar 

  30. Litmanovich AA, Papisov IM (1997) Preparation of nanocomposites in the processes controlled by macromolecular pseudomatrices: a theoretical treatment. Polym Sci Ser B+ 39:41–44

    Google Scholar 

  31. Holmberg K, Jönsson B, Kronberg B, Lindman B (2002) Surfactants and polymers in aqueous solution. Wiley, Ltd

Download references

Acknowledgements

This study was financially supported by the Ministry of Education and Science of the Russian Federation (basic part of the State Task No. 2014/16, Project No. 1949), and by the South Scientific Center of the Russian Academy of Science (basic part of the State Task N 007-01114-16 PR 0256-2014-0009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Ozerin.

Ethics declarations

Funding

This study was funded by the Ministry of Education and Science of the Russian Federation (basic part of the State Task No. 2014/16, Project No. 1949), and by the South Scientific Center of the Russian Academy of Science (basic part of the State Task N 007-01114-16 PR 0256-2014-0009).

Conflict of interest

Author A. S. Ozerin has received research grant from the South Scientific Center of the Russian Academy of Science (basic part of the State Task N 007-01114-16 PR 0256-2014-0009). Authors O.A. Krotikova, Ph. S. Radchenko, I. A. Novakov have received research grant from the Ministry of Education and Science of the Russian Federation (basic part of the State Task No. 2014/16, Project No. 1949).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krotikova, O.A., Ozerin, A.S., Radchenko, P.S. et al. Aqueous phase synthesis of silver iodide nanoparticles from a polyacrylic acid–silver complex. Colloid Polym Sci 295, 99–105 (2017). https://doi.org/10.1007/s00396-016-3981-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-016-3981-9

Keywords

Navigation