Skip to main content
Log in

Structure and flow behavior of dilute dispersions of carbon nanotubes in polyacrylonitrile–dimethylsulfoxide solution

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Rheological behavior of carbon nanotubes (at the concentration below the percolation threshold) finely dispersed in semidilute polyacrylonitrile–dimethylsulfoxide solution has been studied as a function of the applied pre-shear stress and discussed in view of possible structural changes induced by pre-shearing of the samples. The observed effects have been ascribed to a combination of processes involving alignment and association of the macromolecules as well as orientation and association of carbon nanotubes. The effects caused by the macromolecules alignment and association are mainly observed at low concentration of the filler and at high shear stress, whereas the processes involving carbon nanotubes reorganization are mainly observed at the higher filler content and at lower pre-shear stress. The nanotubes rearrangement under shear has been probed via hyphenated rheology–synchrotron X-ray small-angle scattering measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bonn D, Meunier J, Greffier O, Al-Kahwaji A, Kellay H (1998) Bistability in non-Newtonian flow: rheology of lyotropic liquid crystals. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Top 58:2115–2118. doi:10.1103/PhysRevE.58.2115

    CAS  Google Scholar 

  2. Olmsted PD, Lu C-YD (1999) Phase coexistence of complex fluids in shear flow. Faraday Discuss 112:183–194. doi:10.1039/A900245F

    Article  CAS  Google Scholar 

  3. Poslinski AJ, Ryan ME, Gupta RK, Seshadri SG, Frechette FJ (1988) Rheological behavior of filled polymeric systems I. Yield stress and shear-thinning effects. J Rheol 32:703–735. doi:10.1122/1.549987

    Article  CAS  Google Scholar 

  4. Litchfield DW, Baird DJ (2006) The rheology of high aspect ratio nanoparticle filled liquids. Rheol Rev 1–60

  5. Weisenberger MC, Grulke EA, Jacques D, Rantell T, Andrews R (2003) Enhanced mechanical properties of polyacrylonitrile/multiwall carbon nanotube composite fibers. J Nanosci Nanotechnol 3:535–539. doi:10.1166/jnn.2003.239

    Article  CAS  Google Scholar 

  6. Hobbie EK (2010) Shear rheology of carbon nanotube suspensions. Rheol Acta 49:323–334. doi:10.1007/s00397-009-0422-4

    Article  CAS  Google Scholar 

  7. Richter S, Saphiannikova M, Jehnichen D, Bierdel M, Heinrich G (2009) Experimental and theoretical studies of agglomeration effects in multi-walled carbon nanotube-polycarbonate melts. Express Polym Lett 3:753–768. doi:10.3144/expresspolymlett.2009.94

    Article  CAS  Google Scholar 

  8. Lin-Gibson S, Pathak JA, Grulke EA, Wang H, Hobbie EK (2004) Elastic flow instability in nanotube suspensions. Phys Rev Lett 92:048302-1–048302-4. doi:10.1103/PhysRevLett.92.048302

    Google Scholar 

  9. Semakov AV, Kulichikhin VG, Tereshin AK, Antonov SV, Malkin AYA (2015) On the nature of phase separation of polymer solutions at high extension rates. J Polym Sci B Polym Phys 53:559–565. doi:10.1002/polb.23668

    Article  CAS  Google Scholar 

  10. Pujari S, Rahatekar S, Gilman JW, Koziol KK, Windle AH, Burghardt WR (2011) Shear-induced anisotropy of concentrated multiwalled carbon nanotube suspensions using x-ray scattering. J Rheol 55:1033–1058. doi:10.1122/1.3609854

    Article  CAS  Google Scholar 

  11. Wang W, Murthy NS, Chae HG, Kumar S (2009) Small-angle X-ray scattering investigation of carbon nanotube-reinforced polyacrylonitrile fibers during deformation. J Polym Sci B Polym Phys 47:2394–2409. doi:10.1002/polb.21836

    Article  CAS  Google Scholar 

  12. Karpushkin EA, Berkovich AK, Artemov MV, Sergeyev VG (2014) Rheological properties of polyacrylonitrile solutions containing highly dispersed carbon nanotubes. Polym Sci Ser A 56:681–686. doi:10.1134/S0965545X14050083

    Article  CAS  Google Scholar 

  13. Karpushkin E, Lapshina M, Sergeyev V (2015) Shear-induced structure evolution of carbon nanotubes dispersions in polyacrylonitrile–dimethylsulfoxide solution. AIP Conf Proc 1662:040004. doi:10.1063/1.4918892

    Article  Google Scholar 

  14. Karpushkin E, Berkovich A, Sergeyev V (2015) Stabilization of multi-walled carbon nanotubes aqueous dispersion with poly-N-vinylpyrrolidone via polymer-wrapping. Macromol Symp 348:63–67. doi:10.1002/masy.201400162

    Article  CAS  Google Scholar 

  15. Udra SA, Mashchenko VI, Kazarin LA, Gerasimov VI (2008) Gelation in solutions of high-molecular-mass polyacrylonitrile under shear deformation. Polym Sci Ser A 50:1233–1237. doi:10.1134/S0965545X08120067

    Article  Google Scholar 

  16. Vshivkov SA, Kulichikhin SG, Rusinova EV (1998) Phase transitions in polymer solutions induced by mechanical fields. Russ Chem Rev 67:233–243. doi:10.1070/RC1998v067n03ABEH000319

    Article  Google Scholar 

  17. Zimm BH (1945) Molecular theory of the scattering of light in fluids. J Chem Phys 13:141–145. doi:10.1063/1.1724013

    Article  CAS  Google Scholar 

  18. Zimm BH (1948) The scattering of light and the radial distribution function of high polymer solutions. J Chem Phys 16:1093–1099. doi:10.1063/1.1746738

    Article  CAS  Google Scholar 

  19. Angelov B, Angelova A, Filippov SK, Karlsson G, Terrill N, Lesieur S, Štěpánek P (2011) Topology and internal structure of PEGylated lipid nanocarriers for neuronal transfection: synchrotron radiation SAXS and cryo-TEM studies. Soft Matter 7:9714–9720. doi:10.1039/C1SM06447A

    Article  CAS  Google Scholar 

  20. Sorensen CM (2001) Light scattering by fractal aggregates: a review. Aerosol Sci Technol 35:648–687. doi:10.1080/02786820117868

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the ESRF (European Synchrotron Radiation Facility, Grenoble, France) for granting SAXS beam time (project SC-4167). S.F. acknowledges the Czech Science Foundation (Grant No. 15-10527 J). S.F. also acknowledges the project INGO LG13058. E.K. acknowledges partial financial support from the Russian Foundation for Basic Research (project no. 14-03-31715_mol_a). I.B. acknowledges funding from the Ministry of Education and Science of the Russian Federation (no. 14.577.21.0095 from 25th August 2014); unique identifier RFMEFI57714X0095. Dr. T. Narayanan and Dr. J. Möller are acknowledged for the kind support at the ESRF ID02 beamline.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeny Karpushkin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(DOCX 363 kb)

Fig. S2

(DOCX 36 kb)

Fig. S3

(DOCX 77 kb)

Fig. S4

(DOCX 43 kb)

Fig. S5

(DOCX 118 kb)

Fig. S6

(DOCX 682 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karpushkin, E., Gvozdik, N., Klimenko, M. et al. Structure and flow behavior of dilute dispersions of carbon nanotubes in polyacrylonitrile–dimethylsulfoxide solution. Colloid Polym Sci 294, 1187–1195 (2016). https://doi.org/10.1007/s00396-016-3878-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-016-3878-7

Keywords

Navigation