Skip to main content
Log in

On the molecular mechanism of self-healing of glassy polymers

  • Short Communication
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The chain ends concentrations in a near-surface nanometre-thick layer of such representative amorphous polymers as atactic polystyrene (PS), poly(2,6-dimethyl-1,4-phenylene oxide) (PPO), and poly(methyl methacrylate) (PMMA) have been estimated. It has been shown that the number of the chain ends located in that layer is sufficient to give rise to the development of the intermolecular van-der-Waals bonds via the interdiffusion of the chain ends across the interface between the two contacting polymer samples, even at the healing temperatures that are lower by some tens or even a hundred degrees of Kelvin with respect to the bulk glass transition temperatures, making the interface capable to bear the mechanical load. The validity of the molecular mechanism of self-healing of amorphous polymers with glassy bulk proposed earlier has been confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Wool RP (1995) Polymer interfaces: structure and strength. Hanser Press, Munich

    Google Scholar 

  2. Zhang MQ, Rong MZ (2012) Theoretical consideration and modeling of self-healing polymers. J Polym Sci Part B Polym Phys 50:229–241. doi:10.1002/polb.22387

    Article  CAS  Google Scholar 

  3. Blaiszik BJ, Kramer SLB, Olugebefola SC, Moore JS, Sottos NR, White SR (2010) Self-healing polymers and composites. Annu Rev Mater Res 40:179–211. doi:10.1146/annurev-matsci-070909-104532

    Article  CAS  Google Scholar 

  4. Murphy EB, Wudl F (2010) The world of smart healable materials. Progr Polym Sci 35:223–251. doi:10.1016/j.progpolymsci.2009.10.006

    Article  CAS  Google Scholar 

  5. Voyutskii SS (1963) Autoadhesion and adhesion of high polymers. Interscience, New York

    Google Scholar 

  6. Prager S, Tirrell M (1981) The healing process at polymer-polymer interfaces. J Chem Phys 75:5194–5198. doi:10.1063/1.441871

    Article  CAS  Google Scholar 

  7. Jud K, Kausch HH, Williams JG (1981) Fracture mechanics studies of crack healing and welding of polymers. J Mater Sci 16:204–210. doi:10.1007/BF00552073

    Article  CAS  Google Scholar 

  8. Kline DB, Wool RP (1988) Polymer welding relations investigated by a lap shear joint method. Polym Eng Sci 28:52–57. doi:10.1002/pen.760280109

    Article  CAS  Google Scholar 

  9. Kim JH, Wool RP (1983) A theory of healing at a polymer-polymer interface. Macromolecules 16:1115–1120. doi:10.1021/ma00241a013

    Article  CAS  Google Scholar 

  10. Cho B-R, Kardos JL (1995) Consolidation and self-bonding in poly(ether ether ketone). J Appl Polym Sci 56:1435–1454. doi:10.1002/app.1995.070561106

    Article  CAS  Google Scholar 

  11. Boiko YM, Prud’homme RE (1997) Bonding at symmetric polymer/polymer interfaces below the glass transition temperature. Macromolecules 30:3708–3710. doi:10.1021/ma960002x

    Article  CAS  Google Scholar 

  12. Zhang X, Tasaka S, Inagaki N (2000) Surface mechanical properties of low-molecular-weight polystyrene below its glass-transition temperatures. J Polym Sci Part B Polym Phys 38:654–658. doi:10.1002/(SICI)1099-0488(20000301)

    Article  CAS  Google Scholar 

  13. Meyers GF, DeCoven BM, Seitz JT (1992) Is the molecular surface of polystyrene really glassy? Langmuir 8:2330–2335. doi:10.1021/la00045a042

    Article  CAS  Google Scholar 

  14. Mansfield KF, Theodorou DN (1991) Molecular dynamics simulation of a glassy polymer surface. Macromolecules 24:6283–6294. doi:10.1021/ma00023a034

    Article  CAS  Google Scholar 

  15. Mayes AM (1994) Glass transition of amorphous polymer surfaces. Macromolecules 27:3114–3115. doi:10.1021/ma00089a033

    Article  CAS  Google Scholar 

  16. Kajiyama T, Tanaka K, Takahara A (1995) Depth dependence of the surface glass transition temperature of a poly(styrene-block-methyl methacrylate) diblock copolymer film on the basis of temperature-dependent X-ray photoelectron spectroscopy. Macromolecules 28:3482–3484. doi:10.1021/ma00113a059

    Article  CAS  Google Scholar 

  17. Boiko YM, Prud’homme RE (1998) Strength development at the interface of amorphous polymers and their miscible blends, below the glass transition temperature. Macromolecules 31:6620–6626. doi:10.1021/ma9610368

    Article  CAS  Google Scholar 

  18. Boiko YM, Prud’homme RE (1998) Morphology of fractured polymer surfaces self-bonded below the glass transition temperature. Mech Compos Mater 34:473–482. doi:10.1007/BF02254711

    Article  CAS  Google Scholar 

  19. Boiko YM, Prud’homme RE (1999) Mechanical properties developing at the interface of amorphous miscible polymers, below the glass transition temperature: time-temperature superposition. J Appl Polym Sci 74:825–830. doi:10.1002/(SICI)1097-4628(19991024)

    Article  CAS  Google Scholar 

  20. Boiko YM (2011) Interdiffusion of polymers with glassy bulk. Colloid Polym Sci 289:1847–1854. doi:10.1007/s00396-011-2508-7

    Article  CAS  Google Scholar 

  21. Boiko YM, Lyngaae-Jørgensen J (2004) Healing of interfaces of high- and ultra-high-molecular-weight polystyrene below the glass transition temperature of the bulk. Polymer 45:8541–8549. doi:10.1016/j.polymer.2004.10.021

    Article  CAS  Google Scholar 

  22. Boiko YM (2013) Is adhesion between amorphous polymers sensitive to the bulk glass transition? Colloid Polym Sci 291:2259–2262. doi:10.1007/s00396-013-2958-1

    Article  CAS  Google Scholar 

  23. Boiko YM (2010) New simple method of measuring the surface glass transition temperature of polymers. J Polym Sci Part B Polym Phys 48:2012–2021. doi:10.1002/polb.22081

    Article  CAS  Google Scholar 

  24. Boiko YM (2010) Surface glass transition of amorphous miscible polymers blends. Colloid Polym Sci 288:1757–1761. doi:10.1007/s00396-010-2315-6

    Article  CAS  Google Scholar 

  25. Boiko YM (2011) On the scaling law of the evolution of lap-shear strength with healing temperature at amorphous polymer-polymer interfaces and surface glass transition. Colloid Polym Sci 289:971–979. doi:10.1007/s00396-011-2405-0

    Article  CAS  Google Scholar 

  26. Boiko YM, Mamalimov RI (2014) On the fracture mechanism of partially healed interfaces of glassy polymers: an ATR-FTIR investigation. Colloid Polym Sci 292:1003–1007. doi:10.1007/s00396-014-3181-4

    Article  CAS  Google Scholar 

  27. Boiko YM (2014) On the continuity of the diffusion behaviour at amorphous polymer-polymer interfaces on both sides of the bulk glass transition temperature. Colloid Polym Sci 292:1719–1723. doi:10.1007/s00396-014-3238-4

    Article  CAS  Google Scholar 

  28. Boiko YM, Myansikova LP (2016) On the nature of enhanced segmental mobility at entangled amorphous polymers interfaces. Colloid Polym Sci 294:471–478. doi:10.1007/s00396-015-3806-2

    Article  CAS  Google Scholar 

  29. Welp KA, Wool RP, Agrawal G, Satija SK, Pispas S, Mays J (1999) Direct observation of polymer dynamics: mobility comparison between central and end section chain segments. Macromolecules 32:5127–5138. doi:10.1021/ma990196r

    Article  CAS  Google Scholar 

  30. De Gennes P-G (1971) Reptation of a polymer chain in the presence of fixed obstacles. J Chem Phys 55:572–579. doi:10.1063/1.1675789

    Article  Google Scholar 

  31. Keddie JL, Jones RAL, Cory RA (1994) Size-dependent depression of the glass transition temperature in polymer films. Europhys Lett 27:59–64. doi:10.1209/0295-5075/27/1/011

    Article  CAS  Google Scholar 

  32. Bäumchen O, McGraw JD, Forrest JA, Dalnoki-Veress K (2012) Reduced glass transition temperatures in thin polymer films: surface effect or artifact? Phys Rev Lett 109:055701. doi:10.1103/PhysRevLett.109.055701

    Article  Google Scholar 

  33. Flory P (1969) Statistical mechanics of chain Molecules. Interscience, New York

    Google Scholar 

  34. Boiko YM, Lyngaae-Jørgensen J (2004) Bonding at compatible and incompatible amorphous interfaces of polystyrene and poly(methyl methacrylate) below the glass transition temperature. J Macromol Sci Phys 43:695–709. doi:10.1081/MB-120030015

    Article  Google Scholar 

  35. Aharoni SM (1983) On entanglements of flexible and rodlike polymers. Macromolecules 16:1722–1728. doi:10.1021/ma00245a008

    Article  CAS  Google Scholar 

  36. Haward RN, Young RJ (1997) The physics of glassy polymers, 2nd edn. Chapman and Hall, London

    Book  Google Scholar 

  37. Van Krevelen DW, te Nijenhuis K (2009) Properties of polymers: their correlation with chemical structure; their numerical estimation and prediction from additive group contributions, 4th edn. Elsevier Science, UK

    Google Scholar 

  38. Grandbois M, Beyer M, Rief M, Clausen-Schaumann H, Gaub HE (1999) How strong is a covalent bond? Science 283:1727–1730. doi:10.1126/science.283.5408.1727

    Article  CAS  Google Scholar 

  39. DiNardo NJ (1994) Nanoscale characterization of surfaces and interfaces. Weinheim, VCH

    Book  Google Scholar 

  40. Boiko YM, Zakrevskii VA, Pakhotin VA (2014) Chain scission upon fracture of autoadhesive joints formed from glassy poly(phenylene oxide). J Adhesion 90:596–606. doi:10.1080/00218464.2013.822305

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Federal Agency of Scientific Organizations of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri M. Boiko.

Ethics declarations

Conflict of interest

The author declares that he has no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boiko, Y.M. On the molecular mechanism of self-healing of glassy polymers. Colloid Polym Sci 294, 1237–1242 (2016). https://doi.org/10.1007/s00396-016-3868-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-016-3868-9

Keywords

Navigation