Skip to main content
Log in

On the fracture mechanism of partially healed interfaces of glassy polymers: an ATR-FTIR investigation

  • Short Communication
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) has been employed to analyse the surfaces of poly(2,6-dimethyl-1,4-phenylene-oxide) (PPO) samples prior to contact and after fracture of the PPO–PPO auto-adhesive joints which formed during the contact of two identical PPO samples at temperatures of 146 or 156 °С that are lower than the PPO bulk glass transition temperature by 70 or 60 °С, respectively. The differences in the intensity of ATR-FTIR spectra for the original and fractured PPO surfaces found have been discussed in the frameworks of the molecular mechanisms of fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Mansfield KF, Theodorou DN (1991) Macromolecules 24:6283–6294

    Article  CAS  Google Scholar 

  2. Mayes AM (1994) Macromolecules 27:3114–3115

    Article  CAS  Google Scholar 

  3. Kajiyama T, Tanaka K, Takahara A (1995) Macromolecules 28:3482–3484

    Article  CAS  Google Scholar 

  4. Meyers GF, DeCoven BM, Seitz JT (1992) Langmuir 8:2330–2335

    Article  CAS  Google Scholar 

  5. Hyun J, Aspnes DE, Cuomo JJ (2001) Macromolecules 34:2395–2397

    Article  CAS  Google Scholar 

  6. Prucker O, Christian S, Bock H, Rühe J, Frank CW, Knoll W (1998) Macromol Chem Phys 199:1435–1444

    Article  CAS  Google Scholar 

  7. Akabori K, Tanaka K, Kajiyama T, Takahara A (2003) Macromolecules 36:4937–4943

    Article  CAS  Google Scholar 

  8. Fischer H (2002) Macromolecules 35:3592–3595

    Article  CAS  Google Scholar 

  9. Zhang X, Tasaka S, Inagaki N (2000) J Polym Sci: Part B: Polym Phys 38:654–658

    Article  CAS  Google Scholar 

  10. Akabori K, Baba D, Koguchi K, Tanaka K, Nagamura T (2006) J Polym Sci: Part B: Polym Phys 44:3598–3604

    Article  CAS  Google Scholar 

  11. Efremov MY, Olson EA, Zhang M, Zhang Z, Allen LH (2003) Phys Rev Lett 91:085703 (1−4)

    Google Scholar 

  12. Serghei A, Huth H, Schick C, Kremer F (2008) Macromolecules 41:3636–3639

    Article  CAS  Google Scholar 

  13. Bäumchen O, McGraw JD, Forrest JA, Dalnoki-Veress K (2012) Phys Rev Lett 109: 055701 (1−5)

    Google Scholar 

  14. Ge S, Pu Y, Zhang W, Rafailovich M, Sokolov J, Buenviaje C, Buckmaster R, Overney RM (2000) Phys Rev Lett 85:2340–2343

    Article  CAS  Google Scholar 

  15. Boiko YM, Prud’homme RE (1997) Macromolecules 30:3708–3710

    Article  CAS  Google Scholar 

  16. Boiko YM, Lyngaae-Jørgensen J (2004) Polymer 45:8541–8549

    Article  CAS  Google Scholar 

  17. Boiko YM, Bach A, Lyngaae-Jørgensen J (2004) J Polym Sci: Part B: Polym Phys 42:1861–1867

    Article  CAS  Google Scholar 

  18. Boiko YM (2010) J Polym Sci: Part B: Polym Phys 48:2012–2021

    Article  CAS  Google Scholar 

  19. Boiko YM (2011) Colloid Polym Sci 289:1847–1854

    Article  CAS  Google Scholar 

  20. Boiko YM (2012) Macromol Symp 316:71–78

    Article  CAS  Google Scholar 

  21. Boiko YM (2012) Colloid Polym Sci 290:1201–1206

    Article  CAS  Google Scholar 

  22. Volynskii AL, Bakeev NF (2009) Polym Sci A 51:1783–1816

    CAS  Google Scholar 

  23. Voyutskii SS (1963) Autoadhesion and adhesion of high polymers. Interscience, New York

    Google Scholar 

  24. Jud K, Kausch HH, Williams JG (1981) J Mater Sci 16:204–210

    Article  CAS  Google Scholar 

  25. Wool RP (1995) Polymer interfaces: structure and strength. Hanser, Munich

    Google Scholar 

  26. Boucher E, Folkers JP, Hervet H, Leger L, Creton C (1996) Macromolecules 29:774–782

    Article  CAS  Google Scholar 

  27. Cho B-R, Kardos JL (1995) J Appl Polym Sci 56:1435–1454

    Article  CAS  Google Scholar 

  28. Boiko YM, Mamalimov RI, Vettegren VI (2013) Phys Solid State 55:1450–1453

    Article  CAS  Google Scholar 

  29. Smith AL (1979) Applied infrared spectroscopy: fundamentals, techniques and analytical problem-solving. Wiley, New York

    Google Scholar 

  30. Huang Y, Paul DR (2007) J Polym Sci: Part B: Polym Phys 45:1390–1398

    Article  CAS  Google Scholar 

  31. Choi CH, Kertesz M (1997) J Phys Chem A 101:3823–3831

    Article  CAS  Google Scholar 

  32. Rugg FM, Smith JJ, Bacon RC (1954) J Polym Sci 13:535–547

    Article  CAS  Google Scholar 

  33. Smith B (1999) Infrared spectra interpretation. CRC LLC, New York

    Google Scholar 

  34. D’Esposito L, Koenig JL (1979) Polym Eng Sci 18:162–165

    Article  Google Scholar 

  35. Spurr RA, Hanking BM, Rowen JW (1959) J Polym Sci 37:431–440

    Article  CAS  Google Scholar 

  36. Mailhot B, Gardette J-L (1992) Macromolecules 25:4119–4126

    Article  CAS  Google Scholar 

  37. Kanayama A, Ueda S, Ibe S (1992) US Patent no. 5159027

  38. Dwain M, Laura A (1992) US Patent no. 5122575

  39. Nakanishi K, Solomon PH (1977) Infrared absorption spectroscopy. Holden-Day, San-Francisco

    Google Scholar 

  40. Pliev TN, Karpov ON, Gordienko LL, Lavrenyuk TY (1974) Russian J Appl Spectroscopy 20:62–67

    Article  Google Scholar 

  41. Salumosi F (1999) Catalytic activation and functionalisation of light alkanes. Advances and challenges. Eds: Derouane EG, Haber J, Lemos F, Ribeiro FR, Guisnet M. NATO ASI Series 3 High technology 44:369−388

  42. Grandbois M, Beyer M, Rief M, Clausen-Schaumann H, Gaub HE (1999) Science 283:1727–1730

    Article  CAS  Google Scholar 

  43. Milinchuk VK, Klinshpont ER, Pshezheckii SY (1980) Macroradicals (in Russian). Khimiya, Moscow

    Google Scholar 

  44. Jachowicz J, Kryszewski M (1978) Polymer 19:93–98

    Article  CAS  Google Scholar 

  45. Gupta S, Chandra T, Sikder A, Menon A, Bhowmick AK (2008) J Mater Sci 43:3338–3350

    Article  CAS  Google Scholar 

  46. Boiko YuM, Zakrevskii VA, Pakhotin VA (2013) J Adhesion doi:10.1080/00218464.2013.822305

  47. Boiko YM, Prud'homme RE (2005) J Macromol Sci Part B – Phys 44:413–420

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri M. Boiko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boiko, Y.M., Mamalimov, R.I. On the fracture mechanism of partially healed interfaces of glassy polymers: an ATR-FTIR investigation. Colloid Polym Sci 292, 1003–1007 (2014). https://doi.org/10.1007/s00396-014-3181-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3181-4

Keywords

Navigation