Skip to main content
Log in

Re-assembly behaviors of block copolymer micelles on substrates: effects of block length and interaction force

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The re-assembly behaviors of amphiphilic polystyrene-b-poly(acrylic acid) (PS-b-PAA) diblock copolymer micelles were investigated using dynamic light scattering, transmission electron microscopy, and atom force microscopy. PS-b-PAA diblock copolymer self-assembled into spherical micelles with PS as shell and PAA as core in toluene. The micelle size increased with the PS block length in polymers containing a constant length of PAA block. With the PS block length increased, spherical micelles re-assembled various distinguished morphologies such as clusters, large compound micelles (LCMs), rings, and ribbon-like aggregations. In addition, the interaction forces between PS and different substrates were directly measured in toluene to further investigate the mechanism. The results indicated that the re-assembly occurred easily when the interaction force was weak. Systematic studies suggested that the micellar re-assembly behaviors on a flat surface were strongly dependent on the block length and interaction between micelles and substrates. Delineation of these rules provides a novel pathway to the design of hierarchical materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Xie Y, Guo S, Guo C, He M, Chen D, Ji Y, Chen Z, Wu X, Liu Q, Xie S (2013) Langmuir 29:6232–6241

    Article  CAS  Google Scholar 

  2. Rupar PA, Chabanne L, Winnik MA, Manners I (2012) Science 337:559–562

    Article  CAS  Google Scholar 

  3. Diaz IL, Perez LD (2015) Colloid Polym Sci 293:913–923

    Article  CAS  Google Scholar 

  4. Mai Y, Eisenberg A (2012) Chem Soc Rev 41:5969–5985

    Article  CAS  Google Scholar 

  5. Li Z, Amado E, Kressler J (2013) Colloid Polym Sci 291:867–877

    Article  CAS  Google Scholar 

  6. Park WM, Champion JA (2014) J Am Chem Soc 136:17906–17909

    Article  CAS  Google Scholar 

  7. Alegria A, Lund R, Barroso-Bujans F, Arbe A, Colmenero J (2014) Colloid Polym Sci 292:1863–1876

    Article  CAS  Google Scholar 

  8. Hudson ZM, Boott CE, Robinson ME, Rupar PA, Winnik MA, Manners I (2014) Nat Chem 6:893–898

    Article  CAS  Google Scholar 

  9. Discher DE, Eisenberg A (2002) Science 297:967–973

    Article  CAS  Google Scholar 

  10. Zhao L, Wu C, Wang F, Ying A, Xu C, Liu S (2014) Colloid Polym Sci 292:1675–1683

    Article  CAS  Google Scholar 

  11. Ogi S, Stepanenko V, Sugiyasu K, Takeuchi M, Wuerthner F (2015) J Am Chem Soc 137:3300–3307

    Article  CAS  Google Scholar 

  12. Rainbolt EA, Miller JB, Washington KE, Senevirathne SA, Biewer MC, Siegwart DJ, Stefan MC (2015) J Mater Chem B 3:1779–1787

    Article  CAS  Google Scholar 

  13. Choi YY, Jang JH, Park MH, Choi BG, Chi B, Jeong B (2010) J Mater Chem 20:3416–3421

    Article  CAS  Google Scholar 

  14. Luo CH, Liu Y, Li ZB (2012) Soft Matter 8:2618–2626

    Article  CAS  Google Scholar 

  15. Shimada T, Megley K, Tirrell M, Hotta A (2011) Soft Matter 7:8856–8861

    Article  CAS  Google Scholar 

  16. Kroeger A, Li X, Eisenberg A (2007) Langmuir 23:10732–10740

    Article  CAS  Google Scholar 

  17. Cui H, Chen Z, Zhong S, Wooley KL, Pochan DJ (2007) Science 317:647–650

    Article  CAS  Google Scholar 

  18. Jenekhe SA, Chen XL (1999) Science 283:372–375

    Article  CAS  Google Scholar 

  19. Li Z, Xing L, Xiang J, Liang X, Zhao C, Sai H, Li F (2014) Rsc Advances 4:31210–31218

    Article  CAS  Google Scholar 

  20. Zhang Y, Xiao X, Zhou JJ, Wang L, Li ZB, Li L, Shi LQ, Chan CM (2009) Polymer 50:6166–6171

    Article  CAS  Google Scholar 

  21. Upadhyayula S, Quinata T, Bishop S, Gupta S, Johnson NR, Bahmani B, Bozhilov K, Stubbs J, Jreij P, Nallagatla P, Vullev VI (2012) Langmuir 28:5059–5069

    Article  CAS  Google Scholar 

  22. Chang CY, Lee YC, Wu PJ, Liou JY, Sun YS, Ko BT (2011) Langmuir 27:14545–14553

    Article  CAS  Google Scholar 

  23. Wang C-W, Sinton D, Moffitt MG (2013) ACS Nano 7:1424–1436

    Article  CAS  Google Scholar 

  24. Zhang L, Eisenberg A (1996) J Am Chem Soc 118:3168–3181

    Article  CAS  Google Scholar 

  25. Zhang L, Eisenberg A (1995) Science 268:1728–1731

    Article  CAS  Google Scholar 

  26. Davis KA, Matyjaszewski K (2000) Macromolecules 33:4039–4047

    Article  CAS  Google Scholar 

  27. Xie D, Xu K, Bai R, Zhang G (2007) J Phys Chem B 111:778–781

    Article  CAS  Google Scholar 

  28. Liu, Wu J, Kim J-S, Eisenberg A (2006) Langmuir 22:419–424

    Article  CAS  Google Scholar 

  29. Kaewtong C, Jiang G, Felipe MJ, Pulpoka B, Advincula R (2008) ACS Nano 2:1533–1542

    Article  CAS  Google Scholar 

  30. Im H, Bantz KC, Lee SH, Johnson TW, Haynes CL, Oh S-H (2013) Adv Mater 25:2678–2685

    Article  CAS  Google Scholar 

  31. Kawanishi N, Christenson HK, Ninham BW (1990) J Phys Chem 94:4611–4617

    Article  CAS  Google Scholar 

  32. Radenovic A, Bystrenova E, Libioulle L, Valle F, Shubeita GT, Kasas S, Dietler G (2003) J Appl Phys 94:4210–4214

    Article  CAS  Google Scholar 

  33. Yang J, Shao Z (1993) Ultramicroscopy 50:157–170

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 20634050, 20804053, 20174015, 21274007, 51021064), the Tribology Science Fund of State Key Laboratory of Tribology (SKLTKF12A10), and the Science and Technology Development Project of Beijing Municipal Commission of Education (Grant No. SQKM201610011001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhou, J., Yu, Y. et al. Re-assembly behaviors of block copolymer micelles on substrates: effects of block length and interaction force. Colloid Polym Sci 294, 181–187 (2016). https://doi.org/10.1007/s00396-015-3761-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3761-y

Keywords

Navigation