Skip to main content
Log in

Phase diagrams, mechanisms and unique characteristics of alternating-structured polymer self-assembly via simulations

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Alternating-structured polymers (ASPs), like alternating copolymers, regular multiblock copolymers and polycondensates, are very important polymer structures with broad applications in photoelectric materials. However, their self-assembly behaviors, especially the self-assembly of alternating copolymers, have not been clearly studied up to now. Meanwhile, the unique characteristics therein have not been systematically disclosed yet by both experiments and theories. Herein, we have performed a systematic simulation study on the self-assembly of ASPs with two coil alternating segments in solution through dissipative particle dynamics (DPD) simulations. Several morphological phase diagrams were constructed as functions of different impact parameters. Diverse self-assemblies were observed, including spherical micelles, micelle networks, worm-like micelles, disk-like micelles, multimicelle aggregates, bicontinuous micelles, vesicles, nanotubes and channelized micelles. Furthermore, a morphological evolutionary roadmap for all these self-assemblies was constructed, along with which the detailed molecular packing models and self-assembly mechanisms for each aggregate were disclosed. The ASPs were found to adopt a folded-chain mechanism in the self-assemblies. Finally, the unique characteristics for the self-assembly of alternating copolymers were revealed especially, including (1) ultra-fine and uniform feature sizes of the aggregates; (2) independence of self-assembled structures from molecular weight and molecular weight distribution; (3) ultra-small unimolecular aggregates. We believe the current work is beneficial for understanding the self-assembly of alternating structured polymers in solution and can serve as a guide for the further experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mai Y, Eisenberg A. Chem Soc Rev, 2012, 41: 5969–5985

    Article  CAS  Google Scholar 

  2. Discher DE, Eisenberg A. Science, 2002, 297: 967–973

    Article  CAS  PubMed  Google Scholar 

  3. Jin H, Huang W, Zhu X, Zhou Y, Yan D. Chem Soc Rev, 2012, 41: 5986–5997

    Article  CAS  PubMed  Google Scholar 

  4. Wang D, Zhao T, Zhu X, Yan D, Wang W. Chem Soc Rev, 2015, 44: 4023–4071

    Article  CAS  PubMed  Google Scholar 

  5. Zhang L, Eisenberg A. Science, 1995, 268: 1728–1731

    Article  CAS  PubMed  Google Scholar 

  6. Zeng QH, Yu AB, Lu GQ. Prog Polymer Sci, 2008, 33: 191–269

    Article  CAS  Google Scholar 

  7. Zhang W, Wang X, He L. Chin J Polym Sci, 2016, 34: 420–430

    Article  CAS  Google Scholar 

  8. Kosovan P, Kuldova J, Limpouchova Z, Prochazka K, Zhulina EB, Borisov OV. Macromolecules, 2009, 42: 6748–6760

    Article  CAS  Google Scholar 

  9. Zhang L, Lin J, Lin S. J Phys Chem B, 2007, 111: 9209–9217

    Article  CAS  PubMed  Google Scholar 

  10. Qi MW, Huang W, Xiao GY, Zhu XY, Gao C, Zhou YF. Acta Polym Sin, 2017, 2: 214–228

    Google Scholar 

  11. Xu FG, Mai YY, Zhou YF. Acta Polym Sin, 2017, 2: 274–282

    Google Scholar 

  12. Li H, Zhang A, Li K, Huang W, Mai Y, Zhou Y, Yan D. Mater Chem Front, 2018, 2: 1040–1045

    Article  CAS  Google Scholar 

  13. Zhao Y, Liu YT, Lu ZY, Sun CC. Polymer, 2008, 49: 4899–4909

    Article  CAS  Google Scholar 

  14. Choi YK, Bae YH, Kim SW. Macromolecules, 1998, 31: 8766–8774

    Article  CAS  Google Scholar 

  15. Ni Y, Chen F, Shi L, Tong G, Wang J, Li H, Yu C, Zhou Y. Chin J Chem, 2017, 35: 931–937

    Article  CAS  Google Scholar 

  16. Zhang Q, Lin J, Wang L, Xu Z. Prog Polymer Sci, 2017, 75: 1–30

    Article  CAS  Google Scholar 

  17. Wu D, Abezgauz L, Danino D, Ho CC, Co CC. Soft Matter, 2008, 4: 1066–1071

    Article  CAS  Google Scholar 

  18. Lazzara TD, van de Ven TGM, Whitehead MAT. Macromolecules, 2008, 41: 6747–6751

    Article  CAS  Google Scholar 

  19. Fenimore SG, Abezgauz L, Danino D, Ho CC, Co CC. Macromolecules, 2009, 42: 2702–2707

    Article  CAS  Google Scholar 

  20. Liu X, Wang Y, Yi C, Feng, Y, Jiang, J, Cui, Z, Chen M. Acta Chim Sinica, 2009, 5: 447–452

    Google Scholar 

  21. Chenglin Y, Yiqun Y, Ye Z, Na L, Xiaoya L, Jing L, Ming J. Langmuir, 2012, 28: 9211–9222

    Article  CAS  PubMed  Google Scholar 

  22. Chen J, Yu C, Shi Z, Yu S, Lu Z, Jiang W, Zhang M, He W, Zhou Y, Yan D. Angew Chem Int Ed, 2015, 54: 3621–3625

    Article  CAS  Google Scholar 

  23. Li C, Chen C, Li S, Rasheed T, Huang P, Huang T, Zhang Y, Huang W, Zhou Y. Polym Chem, 2017, 8: 4688–4695

    Article  CAS  Google Scholar 

  24. Xu Q, Huang T, Li S, Li K, Li C, Liu Y, Wang Y, Yu C, Zhou Y. Angew Chem Int Ed, 2018, 57: 8043–8047

    Article  CAS  Google Scholar 

  25. Zhang YL, Li CL, Rasheed T, Huang P, Zhou YF. Chin J Polym Sci, 2018, 36: 897–904

    Article  CAS  Google Scholar 

  26. Du B, Mei A, Yang Y, Zhang Q, Wang Q, Xu J, Fan Z. Polymer, 2010, 51: 3493–3502

    Article  CAS  Google Scholar 

  27. Zhou Y, Jiang K, Song Q, Liu S. Langmuir, 2007, 23: 13076–13084

    Article  CAS  PubMed  Google Scholar 

  28. Halperin A. Macromolecules, 1991, 24: 1418–1419

    Article  CAS  Google Scholar 

  29. Hugouvieux V, Axelos MAV, Kolb M. Macromolecules, 2009, 42: 392–400

    Article  CAS  Google Scholar 

  30. Xu Z, Lin J, Zhang Q, Wang L, Tian X. Polym Chem, 2016, 7: 3783–3811

    Article  CAS  Google Scholar 

  31. Li S, Zhang Y, Liu H, Yu C, Zhou Y, Yan D. Langmuir, 2017, 33: 10084–10093

    Article  CAS  PubMed  Google Scholar 

  32. Su Y, Huang J. Chin J Polym Sci, 2016, 34: 838–849

    Article  CAS  Google Scholar 

  33. Lin YL, Chang HY, Sheng YJ, Tsao HK. Soft Matter, 2013, 9: 4802–4814

    Article  CAS  Google Scholar 

  34. He P, Li X, Kou D, Deng M, Liang H. J Chem Phys, 2010, 132: 204905

    Article  CAS  PubMed  Google Scholar 

  35. He P, Li X, Deng M, Chen T, Liang H. Soft Matter, 2010, 6: 1539–1546

    Article  CAS  Google Scholar 

  36. Yang YL, Chen MY, Tsao HK, Sheng YJ. Phys Chem Chem Phys, 2018, 20: 6582–6590

    Article  CAS  PubMed  Google Scholar 

  37. Chang HY, Lin YL, Sheng YJ, Tsao HK. Macromolecules, 2013, 46: 5644–5656

    Article  CAS  Google Scholar 

  38. Lin YL, Chang HY, Sheng YJ, Tsao HK. Macromolecules, 2012, 45: 7143–7156

    Article  CAS  Google Scholar 

  39. Wang Y, Li B, Zhou Y, Lu Z, Yan D. Soft Matter, 2013, 9: 3293–3304

    Article  CAS  Google Scholar 

  40. Yu C, Ma L, Li S, Tan H, Zhou Y, Yan D. Sci Rep, 2016, 6: 26264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tan H, Wang W, Yu C, Zhou Y, Lu Z, Yan D. Soft Matter, 2015, 11: 8460–8470

    Article  CAS  PubMed  Google Scholar 

  42. Chan ASW, Groves M, Malardier-Jugroot C. Mol Simul, 2011, 37: 701–709

    Article  CAS  Google Scholar 

  43. Malardier-Jugroot C, van de Ven TGM, Whitehead MA. Mol Simul, 2005, 31: 173–178

    Article  CAS  Google Scholar 

  44. Huang L, Yu C, Huang T, Xu S, Bai Y, Zhou Y. Nanoscale, 2016, 8: 4922–4926

    Article  CAS  PubMed  Google Scholar 

  45. Hoogerbrugge PJ, Koelman JMVA. Europhys Lett, 1992, 19: 155–160

    Article  Google Scholar 

  46. Español P, Warren P. Europhys Lett, 1995, 30: 191–196

    Article  Google Scholar 

  47. Groot RD, Warren PB. J Chem Phys, 1997, 107: 4423–4435

    Article  CAS  Google Scholar 

  48. Anderson JA, Lorenz CD, Travesset A. J Comput Phys, 2008, 227: 5342–5359

    Article  Google Scholar 

  49. Glaser J, Nguyen TD, Anderson JA, Lui P, Spiga F, Millan JA, Morse DC, Glotzer SC. Comput Phys Commun, 2015, 192: 97–107

    Article  CAS  Google Scholar 

  50. Humphrey W, Dalke A, Schulten K. J Mol Graphics, 1996, 14: 33–38

    Article  CAS  Google Scholar 

  51. Semenov AN, Joanny JF, Khokhlov AR. Macromolecules, 1995, 28: 1066–1075

    Article  CAS  Google Scholar 

  52. Xu B, Li L, Yekta A, Masoumi Z, Kanagalingam S, Winnik MA, Zhang K, Macdonald PM, Menchen S. Langmuir, 1997, 13: 2447–2456

    Article  CAS  Google Scholar 

  53. Lin Z, Liu S, Mao W, Tian H, Wang N, Zhang N, Tian F, Han L, Feng X, Mai Y. Angew Chem Int Ed, 2017, 56: 7135–7140

    Article  CAS  Google Scholar 

  54. Bucknall DG, Anderson HL. Science, 2003, 302: 1904–1905

    Article  CAS  PubMed  Google Scholar 

  55. Barnhill SA, Bell NC, Patterson JP, Olds DP, Gianneschi NC. Macromolecules, 2015, 48: 1152–1161

    Article  CAS  Google Scholar 

  56. Agrawal SK, Sanabria-Delong N, Tew GN, Bhatia SR. Macromolecules, 2008, 41: 1774–1784

    Article  CAS  Google Scholar 

  57. Yekta A, Xu B, Duhamel J, Adiwidjaja H, Winnik MA. Macromolecules, 1995, 28: 956–966

    Article  CAS  Google Scholar 

  58. Zhang J, Lu ZY, Sun ZY. Soft Matter, 2013, 9: 1947–1954

    Article  CAS  Google Scholar 

  59. Markin V, Kozlov M, Borovjagin V. Gen Physiol Biophys, 1984, 3: 361–377

    CAS  PubMed  Google Scholar 

  60. Chernomordik L, Kozlov MM, Zimmerberg J. J Membarin Biol, 1995, 146: 1–14

    Article  CAS  Google Scholar 

  61. Chernomordik LV, Melikyan GB, Chizmadzhev YA. Biochim Biophysica Acta-Rev Biomembr, 1987, 906: 309–352

    Article  CAS  Google Scholar 

  62. Siegel DP. Biophys J, 1993, 65: 2124–2140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hadjiantoniou NA, Triftaridou AI, Kafouris D, Gradzielski M, Patrickios CS. Macromolecules, 2009, 42: 5492–5498

    Article  CAS  Google Scholar 

  64. Greene AC, Zhu J, Pochan DJ, Jia X, Kiick KL. Macromolecules, 2011, 44: 1942–1951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sommerdijk NAJM, Holder SJ, Hiorns RC, Jones RG, Nolte RJM. Macromolecules, 2000, 33: 8289–8294

    Article  CAS  Google Scholar 

  66. Huang L, Lei Z, Huang T, Zhou Y, Bai Y. Nanoscale, 2017, 9: 2145–2149

    Article  CAS  PubMed  Google Scholar 

  67. Srinivas G, Discher DE, Klein ML. Nat Mater, 2004, 3: 638–644

    Article  CAS  PubMed  Google Scholar 

  68. Lynd NA, Hillmyer MA. Macromolecules, 2005, 38: 8803–8810

    Article  CAS  Google Scholar 

  69. Bermudez H, Brannan AK, Hammer DA, Bates FS, Discher DE. Macromolecules, 2002, 35: 8203–8208

    Article  CAS  Google Scholar 

  70. Zhang L, Eisenberg A. Polym Adv Technol, 1998, 9: 677–699

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21893073010, 21404070, 21474062, 51773115, 21774077, 91527304), the Program for Basic Research of Shanghai Science and Technology Commission (17JC1403400), and Centre for High-Performance Computing, Shanghai Jiao Tong University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongfeng Zhou.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Yu, C. & Zhou, Y. Phase diagrams, mechanisms and unique characteristics of alternating-structured polymer self-assembly via simulations. Sci. China Chem. 62, 226–237 (2019). https://doi.org/10.1007/s11426-018-9360-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-018-9360-3

Keywords

Navigation