Skip to main content
Log in

On the maximum of the magnitude of the electrophoretic mobility of a spherical colloidal particle in an electrolyte solution

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The magnitude of the electrophoretic mobility μ of a spherical colloidal particle in an electrolyte solution with κa > 3 (κ = the Debye-Hückel parameter of the electrolyte solution and a = particle radius), when plotted as a function of the particle zeta potential ζ, exhibits a maximum μ max at ζ = ζ max. Analytic expressions applicable for large κa (κa ≥ 30) are derived for μ max and ζ max for a spherical particle in a symmetrical electrolyte solution. Analytic expressions for μ max and ζ max are also derived for a spherical particle in a 2:1 or 1:2 electrolyte solution. Finally, it is to be noted that μ max and ζ max for a cylindrical particle of radius a when the particle is oriented perpendicular to the applied electric field are the same as those for a spherical particle of radius a for large κa (κa ≥ 30).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. von Smoluchowski M (1921) Elektrische endosmose und strömungsströme. In: Greatz E (ed) Handbuch der Elektrizität und des Magnetismus, Band II Stationäre ströme p. Barth, Leipzig, pp 366–428

    Google Scholar 

  2. Hückel E (1924) Die kataphorese der kugel. Phys Z 25:204–210

    Google Scholar 

  3. Henry DC (1931) The cataphoresis of suspended particles. Part I. The equation of cataphoreis. Proc Roy Soc London Ser A 133:106–129

    Article  CAS  Google Scholar 

  4. Overbeek JTG (1943) Theorie der Elektrophorese. Kolloid Beih 54:287–364

    CAS  Google Scholar 

  5. Booth F (1950) The cataphoresis of spherical, solid non-conducting particles in a symmetrical electrolyte. Proc R Soc London Ser A 203:514–533

    Article  CAS  Google Scholar 

  6. Dukhin SS, Semenikhin NM (1970) Theory of double layer polarization and its influence on the electrokinetic and electrooptical phenomena and the dielectric permeability of disperse systems. Calculation of the electrophoretic and diffusiophoretic mobility of solid spherical particles. Kolloidn Zh 32:360–368

    CAS  Google Scholar 

  7. Dukhin SS, Derjaguin BV (1974) Nonequilibrium double layer and electrokinetic phenomena. In: Matievic E (ed) Surface and Colloid Science, vol 2. John Wiley & Sons, Hoboken, pp 273–336

    Google Scholar 

  8. O'Brien RW, White LR (1978) Electrophoretic mobility of a spherical colloidal particle. J Chem Soc Faraday Trans 2 74:1607–1626

    Article  Google Scholar 

  9. O'Brien RW, Hunter RJ (1981) The electrophoretic mobility of large colloidal particles. Can J Chem 59:1878–1887

    Article  Google Scholar 

  10. Ohshima H, Healy TW, White LR (1983) Approximate analytic expressions for the electrophoretic mobility of spherical colloidal particles and the conductivity of their dilute suspensions. J Chem Soc Faraday Trans 2 79:1613–1628

    Article  CAS  Google Scholar 

  11. O'Brien RW (1983) The solution of the electrokinetic equations for colloidal particles with thin double layers. J Colloid Interface Sci 92:204–216

    Article  Google Scholar 

  12. van de Ven TGM (1989) Colloid hydrodynamics. Academic Press, New York

    Google Scholar 

  13. Dukhin SS (1993) Non-equilibrium electric surface phenomena. Adv Colloid Interface Sci 44:1–134

    Article  CAS  Google Scholar 

  14. Ohshima H (1994) A simple expression for Henry’s function for the retardation effect in electrophoresis of spherical colloidal particles. J Colloid Interface Sci 168:269–271

    Article  CAS  Google Scholar 

  15. Ohshima H, Furusawa K (eds) (1998) Electrical phenomena at interfaces, fundamentals, measurements, and applications, 2nd edition, revised and expanded. Dekker, New York

    Google Scholar 

  16. Delgado AV (ed) (2000) Electrokinetics and electrophoresis. Dekker, New York

    Google Scholar 

  17. Ohshima H (2001) Approximate analytic expression for the electrophoretic mobility of a spherical colloidal particle. J Colloid Interface Sci 239:587–597

    Article  CAS  Google Scholar 

  18. Ohshima H (2003) On the limiting electrophoretic mobility of a highly charged colloidal particle in an electrolyte solution. J Colloid Interface Sci 263:337–340

    Article  CAS  Google Scholar 

  19. Ohshima H (2004) Electrophoretic mobility of a highly charged colloidal particle in a solution of general electrolytes. J Colloid Interface Sci 275:665–669

    Article  CAS  Google Scholar 

  20. Ohshima H (2005) Approximate expression for the electrophoretic mobility of a spherical colloidal particle in a solution of general electrolytes. Colloids Surf A Physicochem Eng Asp 267:50–55

    Article  CAS  Google Scholar 

  21. Spasic A, Hsu J-P (eds) (2005) Finely dispersed particles. Micro-. Nano-, Atto-Engineering, CRC Press, Boca Raton

  22. Ohshima H (2006) Theory of colloid and interfacial electric phenomena. Elsevier, Amsterdam

    Google Scholar 

  23. Ohshima H (2010) Biophysical chemistry of biointerfaces. John Wiley & Sons, Hoboken

    Book  Google Scholar 

  24. Ohshima H (ed) (2012) Electrical phenomena at interfaces and biointerfaces: fundamentals and applications in nano-, bio-, and environmental sciences. John Wiley & Sons, Hoboken

    Google Scholar 

  25. Ohshima H (2014) Simple approximate analytic expression for the electrophoretic mobility of a spherical colloidal particle in a mixed solution of 1:1 and 2:1 electrolytes. Colloid Polym Sci 292:1457–1461

    Article  CAS  Google Scholar 

  26. Kobayashi M (2008) Electrophoretic mobility of latex spheres in the presence of divalent ions: experiments and modeling. Colloid Polym Sci 286:935–940

    Article  CAS  Google Scholar 

  27. Chassagne C, Ibanez M (2013) Electrophoretic mobility of latex nanospheres in electrolytes: experimental challenges. Pure Appl Chem 85:41–51

    CAS  Google Scholar 

  28. Kobayashi M, Sasaki A (2014) Electrophoretic mobility of latex spheres in mixture solutions containing mono and divalent counter ions. Colloids Surf A Physicochem Eng Asp 440:74–78

    Article  CAS  Google Scholar 

  29. Ohshima H (2014) Approximate analytic expression for the electrophoretic mobility of a cylindrical colloidal particle. Relaxation effect. Colloid Polym Sci 292:1227–1233

    Article  CAS  Google Scholar 

  30. Sugioka H (2014) dc step response of induced-charge electro-osmosis between parallel electrodes at large voltages. Phys Rev E 90:013007

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Ohshima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohshima, H. On the maximum of the magnitude of the electrophoretic mobility of a spherical colloidal particle in an electrolyte solution. Colloid Polym Sci 294, 13–17 (2016). https://doi.org/10.1007/s00396-015-3756-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3756-8

Keywords

Navigation