Skip to main content
Log in

Size optimization and self-healing evaluation of microcapsules in asphalt binder

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Adding self-healing microcapsules into the asphalt binder seems to be an effective way to autonomously repair the micro-cracks in asphalt concrete, slow fatigue cracks growth rate, restore original mechanical properties, and further enlarge the fatigue life. Size including the diameter of the capsules and the thickness of the shell wall is one key parameter significantly determining the properties of microcapsules. Eleven microcapsule samples fabricated under different stirring rates with different core/shell thickness ratio are prepared. An optimal set of parameters suitable for introduction into asphalt is studied based on the microscope observation, component identification, and thermogravimetric estimation. The self-healing capability of the selected microcapsules is further evaluated based on the fatigue life recovery test. From testing results, it is shown that microcapsules fabricated under the 800 rpm stirring speed with 1:1 core/shell thickness ratio have a much more satisfactory size and shell structure, and present superior capability to improve the healing behavior of asphalt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Al-Rub RKA, Darabi MK, Little DN, Masad EA (2010) A micro-damage healing model that improves prediction of fatigue life in asphalt mixes. International Journal of Engineering Science 48:966–990

    Article  Google Scholar 

  2. Hilloulin B, Tittelboom KV, Gruyaert E, Belie ND, Loukili A (2015) Design of polymeric capsules for self-healing concrete. Cement and Concrete Composites 55:298–307

    Article  CAS  Google Scholar 

  3. Van der Zwaag S (2007) An introduction to material design principles: Damage prevention versus damage management. Self Healing Materials, Springer Netherlands, pp 1–18

    Google Scholar 

  4. Li VC, Lim YM, Chan YW (1998) Feasibility study of a passive smart self-healing cementitious composite. Compos B Eng 29:819–827

    Article  Google Scholar 

  5. Joseph C, Jefferson A, Isaacs B, Lark R, Gardner D (2010) Experimental investigation of adhesive-based self-healing of cementitious materials. Mag Concr Res 62:831–843

    Article  Google Scholar 

  6. Dry C (1994) Matrix cracking repair and filling using active and passive modes for smart timed release of chemicals from fibers into cement matrices. Smart Mater Struct 3:118–123

    Article  CAS  Google Scholar 

  7. Dry C, Corsaw M (2003) A comparison of bending strength between adhesive and steel reinforced concrete with steel only reinforced concrete. Cem Concr Res 33:1723–1727

    Article  CAS  Google Scholar 

  8. Noh HH, Lee JK (2013) Microencapsulation of self-healing agents containing a fluorescent dye. Express polymer letters 7:88–94

    Article  CAS  Google Scholar 

  9. Brown EN, White SR, Sottos NR (2005) Retardation and repair of fatigue cracks in a microcapsule toughened epoxy composite—Part II: in situ self-healing. Composites Science and Technology 65:2474–2480

    Article  CAS  Google Scholar 

  10. Yang J, Keller MW, Moore JS, White SR, Sottos NR (2008) Microencapsulation of isocyanates for self-healing polymers. Macromolecules 41:9650–9655

    Article  CAS  Google Scholar 

  11. García A, Schlangen E, Van de Ven M (2010) Preparation of capsules containing rejuvenators for their use in asphalt concrete. Hazard Mater 184:603–611

    Article  Google Scholar 

  12. Keller MW, Sottos NR (2006) Mechanical properties of microcapsules used in a self-healing polymer. Experimental Mechanics 46:725–733

    Article  CAS  Google Scholar 

  13. Su J, Qiu J, Schlangen E, Wang Y (2015) Investigation the possibility of a new approach of using microcapsules containing waste cooking oil: in situ rejuvenation for aged bitumen. Construct Build Mater 74:83–92

    Article  Google Scholar 

  14. Su J, Qiu J, Schlangen E (2013) Stability investigation of self-healing microcapsules containing rejuvenator for bitumen. Polym Degrad Stab 98:1205–1215

    Article  CAS  Google Scholar 

  15. Su J, Wang X, Dong H (2012) Micromechanical properties of melamine-formaldehyde microcapsules by nanoindentation: effect of size and shell thickness. Mater Lett 89:1–4

    Article  CAS  Google Scholar 

  16. Alic B, Sebenik U, Krajnc M (2012) Microencapsulation of butyl stearate with melamine-formaldehyde resin: effect of decreasing the pH value on the composition and thermal stability of microcapsules. Express Polymer Letters 10:826–836

    Article  Google Scholar 

  17. Kim Y, Kim YR (1997) In situ evaluation of fatigue damage growth and healing of asphalt concrete pavements using stress wave method. Transportation Research Record: Journal of the Transportation Research Board 1568:106–113

    Article  Google Scholar 

  18. García Á (2012) Self-healing of open cracks in asphalt mastic. Fuel 93:264–272

    Article  Google Scholar 

  19. Williams D, Little D, Lytton R, Kim Y, Kim Y (2001) Microdamage healing in asphalt and asphalt concrete, Volume II: Laboratory and field testing to assess and evaluate microdamage and microdamage healing, No. FHWA-RD-98-142.

  20. Kim Y, Little D, Lytton R (2003) Fatigue and healing characterization of asphalt mixtures. Journal of Materials in Civil Engineering 15:75–83

    Article  CAS  Google Scholar 

  21. Van Dijk W, Moreaud H, Quedeville A, Uge P (1972) The fatigue of bitumen and bituminous mixes, Presented at the 3rd International Conference on the Structural Design of Asphalt Pavements, Grosvenor House, Park Lane, London, England, Sept. 11–15, 1972. Vol. 1. No. Proceeding.

  22. Francken L (1979) Fatigue performance of a bituminous road mix under realistic best conditions. Transport Res Rec 712:30–37

    Google Scholar 

  23. Qiu J, van de Ven MFC, Wu SP, Yu JY, Molenaar AAA (2011) Investigating self healing behaviour of pure bitumen using dynamic shear rheometer. Fuel 90:2710–2720

    Article  CAS  Google Scholar 

  24. Lai W, Fu G, Li X, Meng S, Zhao X (2009) Thermal-optical response property of the core-shell structured microcapsule material. Journal of Optoelectronic and Biomedical Materials 1:129–136

    Google Scholar 

  25. Jin H, Mangun CL, Griffin AS, Moore JS, Sottos NR, White SR (2014) Thermally stable autonomic healing in epoxy using a dual-microcapsule system. Adv Mater 26:282–287

    Article  CAS  Google Scholar 

  26. Lu X, Isacsson U (2002) Effect of ageing on bitumen chemistry and rheology. Constrion and Building Materials 16:15–22

    Article  Google Scholar 

  27. Shen J, Amirkhanian S, Miller JA (2007) Effects of rejuvenating agents on superpave mixtures containing reclaimed asphalt pavement. J Mater Civil Eng 19:376–384

    Article  CAS  Google Scholar 

  28. Chen M, Leng B, Wu S, Yang S (2014) Physical, chemical and rheological properties of waste edible vegetable oil rejuvenated asphalt binders. Construct Build Mater 66:286–298

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by the National Natural Science Foundation of China (Nos. 51378393 and 11102104) and the Innovation Program of Shanghai Municipal Education Commission (No. 15ZZ017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingyi Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, D., Hu, J. & Zhu, X. Size optimization and self-healing evaluation of microcapsules in asphalt binder. Colloid Polym Sci 293, 3505–3516 (2015). https://doi.org/10.1007/s00396-015-3721-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3721-6

Keywords

Navigation