Skip to main content
Log in

Enzymatically degradable and flexible bio-nanocomposites derived from PHBV and PBAT blend: assessing thermal, morphological, mechanical, and biodegradation properties

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In order to enhance flexibility of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), blending was carried out with poly(butylene adipate-co-terephthalate) (PBAT) to generate PHBV/PBAT blend (50/50 wt.%/wt.%) using conventionally accepted melt blending process. Two different types of fillers were used to generate nanocomposites, graphene nanosheets (synthetic filler), and vermiculite (natural filler), via melt blending. Thermal, mechanical, and biodegradation properties were assessed in neat polymers, blend, and nanocomposites with different fillers. Effect of blending and different filler loadings on mechanical properties was analyzed systematically where blending of PHBV with PBAT manifested dramatic enhancement of strain at break whereas tensile modulus was well preserved. Nanocomposites manifested significant enhancement in tensile modulus along with higher strain at break as compared to neat PHBV. Biodegradation rate of PHBV was observed to be enhanced by blending with PBAT. In case of nanocomposites, graphene led to suppression of degradation rate whereas vermiculite resulted in faster degradation over neat blends. In context, composites with 10 wt.% vermiculite showed 108 and 1500 % higher degradation in lipase and phosphate buffer saline environment after 8 days, respectively, over neat PHBV. In general, composites with vermiculite exhibited excellent set of properties like tensile modulus, flexibility, and biodegradation. These bio-nanocomposites represent promising candidates for structural applications where biodegradation is a prime requirement, thus leading to an eco-friendly environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Vieira MGA, da Silva MA, dos Santos LO, Beppu MM (2011) European Polymer Journal 47:254–263

    Article  CAS  Google Scholar 

  2. Jiang L, Chen F, Qian J, Huang J, Wolcott M, Liu L, Zhang J (2009) Industrial & Engineering Chemistry Research 49:572–577

    Article  Google Scholar 

  3. Choi JS, Park WH (2004) Polymer Testing 23:455–460

    Article  CAS  Google Scholar 

  4. M. A. Kotnis, G. S. O'Brien and J. Willett, Journal of environmental polymer degradation, 1995, 3, 97–105.

  5. Avella M, La Rota G, Martuscelli E, Raimo M, Sadocco P, Elegir G, Riva R (2000) Journal of Materials Science 35:829–836

    Article  CAS  Google Scholar 

  6. Carli LN, Crespo JS, Mauler RS (2011) Composites Part A: Applied Science and Manufacturing 42:1601–1608

    Article  Google Scholar 

  7. Zhao H, Cui Z, Sun X, Turng L-S, Peng X (2013) Industrial & Engineering Chemistry Research 52:2569–2581

    Article  CAS  Google Scholar 

  8. Nagarajan V, Mohanty AK, Misra M (2013) ACS Sustainable Chemistry & Engineering 1:325–333

    Article  CAS  Google Scholar 

  9. Nagarajan V, Misra M, Mohanty AK (2013) Industrial Crops and Products 42:461–468

    Article  CAS  Google Scholar 

  10. S. Iannace, L. Ambrosio, S. Huang and L. Nicolais, Journal of applied polymer science, 1994, 54, 1525–1535.

  11. Koenig M, Huang S (1995) Polymer 36:1877–1882

    Article  CAS  Google Scholar 

  12. Miao L, Qiu Z, Yang W, Ikehara T (2008) Reactive and Functional Polymers 68:446–457

    Article  CAS  Google Scholar 

  13. S. Wang, P. Ma, R. Wang, S. Wang, Y. Zhang and Y. Zhang, Polymer degradation and stability, 2008, 93, 1364–1369.

  14. Mouritz A, Leong K, Herszberg I (1997) Composites Part A: Applied Science and Manufacturing 28:979–991

    Article  Google Scholar 

  15. Saheb DN, Jog J (1999) Advances in Polymer Technology 18:351–363

    Article  CAS  Google Scholar 

  16. O. Breuer and U. Sundararaj, Polymer composites, 2004, 25, 630–645

  17. Bakis C, Bank LC, Brown V, Cosenza E, Davalos J, Lesko J, Machida A, Rizkalla S, Triantafillou T (2002) Journal of Composites for Construction 6:73–87

    Article  CAS  Google Scholar 

  18. Fu S-Y, Feng X-Q, Lauke B, Mai Y-W (2008) Composites Part B: Engineering 39:933–961

    Article  Google Scholar 

  19. R. Sengupta, M. Bhattacharya, S. Bandyopadhyay and A. K. Bhowmick, Progress in polymer science, 2011, 36, 638–670.

  20. Ku H, Wang H, Pattarachaiyakoop N, Trada M (2011) Composites Part B: Engineering 42:856–873

    Article  Google Scholar 

  21. Kalia S, Kaith B, Kaur I (2009) Polymer Engineering & Science 49:1253–1272

    Article  CAS  Google Scholar 

  22. Xie Y, Hill CA, Xiao Z, Militz H, Mai C (2010) Composites Part A: Applied Science and Manufacturing 41:806–819

    Article  Google Scholar 

  23. Pawar SP, Pattabhi K, Bose S (2014) RSC Advances 4:18842–18852

    Article  CAS  Google Scholar 

  24. R. Rohini and S. Bose, ACS applied materials & interfaces, 2014, 6, 11302–11310.

  25. Thostenson ET, Ren Z, Chou T-W (2001) Composites Science and Technology 61:1899–1912

    Article  CAS  Google Scholar 

  26. Z. Spitalsky, D. Tasis, K. Papagelis and C. Galiotis, Progress in polymer science, 2010, 35, 357–401.

  27. Mural PKS, Madras G, Bose S (2014) RSC Advances 4:4943–4954

    Article  CAS  Google Scholar 

  28. McAllister MJ, Li JL, Adamson DH, Schniepp HC, Abdala AA, Liu J, Herrera-Alonso M, Milius DL, Car R, Prud'homme RK, Aksay IA (2007) Chem Mater 19:4396

    Article  CAS  Google Scholar 

  29. Hummers WS, Offeman RE (1958) J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  30. Chaudhry AU, Mittal V (2013) Polym Eng Sci 53:78

    Article  CAS  Google Scholar 

  31. Javadi A, Srithep Y, Lee J, Pilla S, Clemons C, Gong S, Turng L-S (2010) Composites Part A: Applied Science and Manufacturing 41:982–990

    Article  Google Scholar 

  32. Javadi A, Kramschuster AJ, Pilla S, Lee J, Gong S, Turng LS (2010) Polymer Engineering & Science 50:1440–1448

    Article  CAS  Google Scholar 

  33. Chanmal C, Jog J (2008) Express Polymer Letters 2:294–301

    Article  CAS  Google Scholar 

  34. Tsangaris G, Kouloumbi N, Kyvelidis S (1996) Materials Chemistry and Physics 44:245–250

    Article  CAS  Google Scholar 

  35. Zheng Y, Li P, Zhang J, Wang A (2007) European Polymer Journal 43:1691–1698

    Article  CAS  Google Scholar 

  36. M. E. Schrader and S. Yariv, Journal of colloid and interface science, 1990, 136, 85–94.

  37. S. Tjong, Y. Meng and A. Hay, Chemistry of materials, 2002, 14, 44–51.

  38. Y. Xie and A. Wang, Journal of polymer research, 2009, 16, 143–150.

  39. Leenaerts O, Partoens B, Peeters F (2009) Physical Review B 79:235440

    Article  Google Scholar 

  40. Nguyen DD, Tai N-H, Lee S-B, Kuo W-S (2012) Energy & Environmental Science 5:7908–7912

    Article  CAS  Google Scholar 

  41. Zhang X, Wan S, Pu J, Wang L, Liu X (2011) Journal of Materials Chemistry 21:12251–12258

    Article  CAS  Google Scholar 

  42. Singh Raman R, Chakraborty Banerjee P, Lobo DE, Gullapalli H, Sumandasa M, Kumar A, Choudhary L, Tkacz R, Ajayan PM, Majumder M (2012) Carbon 50:4040–4045

    Article  CAS  Google Scholar 

  43. Mittal V (2007) Journal of Thermoplastic Composite Materials 20:575–599

    Article  CAS  Google Scholar 

  44. D. Li, M. B. Mueller, S. Gilje, R. B. Kaner and G. G. Wallace, Nature nanotechnology, 2008, 3, 101–105.

  45. Yang S-Y, Chang K-H, Tien H-W, Lee Y-F, Li S-M, Wang Y-S, Wang J-Y, Ma C-CM, Hu C-C (2011) Journal of Materials Chemistry 21:2374–2380

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas Mittal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pawar, S.P., Misra, A., Bose, S. et al. Enzymatically degradable and flexible bio-nanocomposites derived from PHBV and PBAT blend: assessing thermal, morphological, mechanical, and biodegradation properties. Colloid Polym Sci 293, 2921–2930 (2015). https://doi.org/10.1007/s00396-015-3700-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3700-y

Keywords

Navigation