Skip to main content
Log in

Liquid crystal sensor for the detection of acetylcholine using acetylcholinesterase immobilized on a nanostructured polymeric surface

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this study, we report on a label-free biosensor for the detection of acetylcholine (ACh) and an acetylcholinesterase (AChE) inhibitor, utilizing liquid crystals (LCs) on a polymeric surface with periodic nanostructures. The polymeric nanostructures, which hold sinusoidal anisotropic patterns, were fabricated by a sequential process of poly(dimethylsiloxane) buckling and replication of these patterns on a poly(urethane acrylate) surface where a film of gold was deposited. AChE was then covalently immobilized onto the gold surface. Optical images of nematic 4-cyano-4′-pentylbiphenyl (5CB) revealed that it aligned parallel to the plane of the enzyme-decorated surface. However, AChE-mediated hydrolysis of ACh resulted in a plume of choline, acetate, and unreacted ACh, which in turn produced a distinctive optical transition of 5CB (from uniform to random) by masking the anisotropic surface topography. The hydrolysis of ACh was inhibited in the presence of a carbamate insecticide (AChE inhibitor), which prevented the orientational transition of 5CB by decreasing the enzymatic activity of AChE. These results suggest that this LC-based enzymatic sensor is highly sensitive to ACh and the AChE inhibitor, with a detection limit of 10 and 1 nM, respectively. This study demonstrates that polymeric surfaces with continuous wavy features can be used as LC-based biosensors to amplify the existence of ACh and an AChE inhibitor without labeling or an additional amplification strategy.

Graphical abstract for the LC-based label-free detection of ACh on a nanostructured polymeric surface

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Stanfield CL (2009) Principles of human physiology, 4th edn. Pearson Education Inc, San Francisco

    Google Scholar 

  2. The National Collaborating Centre for Chronic Conditions (2006) Parkinson’s disease. Royal College of Physicians, London

    Google Scholar 

  3. Francis PT, Palmer AM, Snape M, Wilcock GK (1999) The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J Neurol Neurosurg Psychiatry 66:137–147. doi:10.1136/jnnp.66.2.137

    Article  CAS  Google Scholar 

  4. Mehta M, Adem A, Sabbagh M (2012) New acetylcholinesterase inhibitors for Alzheimer’s disease. Int J Alzheimers Dis 2012:728983. doi:10.1155/2012/728983

    Google Scholar 

  5. Arduini F, Amine A, Moscone D, Palleschi G (2010) Biosensors based on cholinesterase inhibition for insecticides, nerve agents and aflatoxin B1 detection (review). Microchim Acta 170:193–214. doi:10.1007/s00604-010-0317-1

    Article  CAS  Google Scholar 

  6. Ivanov AN, Younusov RR, Evtugyn GA, Arduini F, Moscone D, Palleschi G (2011) Acetylcholinesterase biosensor based on single-walled carbon nanotubes—Co phtalocyanine for organophosphorus pesticides detection. Talanta 85:216–221. doi:10.1016/j.talanta.2011.03.045

    Article  CAS  Google Scholar 

  7. Nikolelis DP, Simantiraki MG, Siontorou CG, Toth K (2005) Flow injection analysis of carbofuran in foods using air stable lipid film based acetylcholinesterase biosensor. Anal Chim Acta 537:169–177. doi:10.1016/j.aca.2004.12.086

    Article  CAS  Google Scholar 

  8. Loewenstein Y, Denari M, Zakut H, Soreq H (1993) Molecular dissection of cholinesterase domains responsible for carbamate toxicity. Chem Biol Interact 87:209–216. doi:10.1016/0009-2797(93)90044-Y

    Article  CAS  Google Scholar 

  9. Matsumara T (1976) Toxicology of Insecticides, 2nd edn. Plenum Press, New York

    Google Scholar 

  10. Telang FW, Ding YS, Volkow ND, Molina PE, Gatley SJ (1999) Pyridostigmine, a carbamate acetylcholinesterase AChE inhibitor and reactivator, is used prophylactically against chemical warfare agents. Nucl Med Biol 26:249–250. doi:10.1016/S0969-8051(98)00094-8

    Article  CAS  Google Scholar 

  11. Bucura B, Fournier D, Danet A, Marty JL (2006) Biosensors based on highly sensitive acetylcholinesterases for enhanced carbamate insecticides detection. Anal Chim Acta 562:115–121. doi:10.1016/j.aca.2005.12.060

    Article  Google Scholar 

  12. Patterson TA, Kosh JW (1992) Simultaneous quantitation of arecoline, acetylcholine, and choline in tissue using gas chromatography/electron impact mass spectrometry. Biol Mass Spectrom 21:299–304. doi:10.1002/bms.1200210606

    Article  CAS  Google Scholar 

  13. Dunphy R, Burinsky DJ (2003) Detection of choline and acetylcholine in a pharmaceutical preparation using high-performance liquid chromatography/electrospray ionization mass spectrometry. J Pharm Biomed Anal 31:905–915. doi:10.1016/S0731-7085(02)00674-X

    Article  CAS  Google Scholar 

  14. Jin T (2003) A new fluorometric method for the detection of the neurotransmitter acetylcholine in water using a dansylcholine complex with p-sulfonated calix[8]arene. J Incl Phenom Macro 45:195–201. doi:10.1023/A:1024506714332

    Article  CAS  Google Scholar 

  15. Bai Y, Abbott NL (2011) Recent advances in colloidal and interfacial phenomena involving liquid crystals. Langmuir 27:5719–5738. doi:10.1021/la103301d

    Article  CAS  Google Scholar 

  16. Hussain A, Pina AS, Roque ACA (2009) Bio-recognition and detection using liquid crystals. Biosens Bioelectron 25:1–8. doi:10.1016/j.bios.2009.04.038

    Article  CAS  Google Scholar 

  17. Han GR, Jang CH (2013) A simple strategy for detecting synthetic polymers on solid surfaces using liquid crystal. Colloid Polym Sci 291:2689–2696. doi:10.1007/s00396-013-3015-9

    Article  CAS  Google Scholar 

  18. Hu QZ, Jang CH (2013) Spontaneous formation of micrometer-scale liquid crystal droplet patterns on solid surfaces and their sensing applications. Soft Matter 9:5779–5784. doi:10.1039/C3SM00002H

    Article  CAS  Google Scholar 

  19. Liu D, Hu QZ, Jang CH (2013) Orientational behaviors of liquid crystals coupled to chitosan-disrupted phospholipid membranes at the aqueous-liquid crystal interface. Colloids Surf B: Biointerfaces 108:142–146. doi:10.1016/j.colsurfb.2013.02.047

    Article  CAS  Google Scholar 

  20. Liao S, Qiao Y, Han W, Xie Z, Wu Z, Shen G, Yu R (2012) Acetylcholinesterase liquid crystal biosensor based on modulated growth of gold nanoparticles for amplified detection of acetylcholine and inhibitor. Anal Chem 84:45–49. doi:10.1021/ac202895j

    Article  CAS  Google Scholar 

  21. Park MK, Jang CH (2010) Liquid crystal-based imaging of biomolecular interactions at roller printed protein surfaces. Bull Korean Chem Soc 31:1223–1227. doi:10.5012/bkcs.2010.31.5.1223

    Article  CAS  Google Scholar 

  22. Park SJ, Jang CH (2014) Detection of mRNA from Escherichia coli in drinking water on nanostructured polymeric surfaces using liquid crystals. Colloid Polym Sci 292:1163–1169. doi:10.1007/s00396-014-3162-7

    Article  CAS  Google Scholar 

  23. Han GR, Jang CH (2012) Measuring ligand-receptor binding events on polymeric surfaces with periodic wave patterns using liquid crystals. Colloids Surf B: Biointerfaces 94:89–94. doi:10.1016/j.colsurfb.2012.01.023

    Article  CAS  Google Scholar 

  24. Han GR, Jang CH (2014) Label-free detection of viruses on a polymeric surface using liquid crystals. Colloids Surf B: Biointerfaces 116:147–152. doi:10.1016/j.colsurfb.2013.12.037

    Article  CAS  Google Scholar 

  25. Ahn SM, Jang CH (2010) Effective parameters for the precise control of thin film buckling on elastomeric substrates. Bull Korean Chem Soc 31:419–422. doi:10.5012/bkcs.2010.31.02.419

    Article  CAS  Google Scholar 

  26. Jang CH, Stevens BD, Carlier PR, Calter MA, Ducker WA (2002) Immobilized enzymes as catalytically-active tools for nanofabrication. J Am Chem Soc 124:12114–12115. doi:10.1021/ja017686v

    Article  CAS  Google Scholar 

  27. Llopis X, Pumera M, Alegreta S, Merkoçi A (2009) Lab-on-a-chip for ultrasensitive detection of carbofuran by enzymatic inhibition with replacement of enzyme using magnetic beads. Lab Chip 9:213–218. doi:10.1039/b816643a

    Article  CAS  Google Scholar 

  28. Wong L, Fisher FM (1975) Determination of carbofuran and its toxic metabolites in animal tissue by gas chromatography of their N-trifluoroacetyl derivatives. J Agric Food Chem 23:315–318. doi:10.1021/jf60198a018

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant of the Korean Health Technology R&D Project, Ministry of Health and Welfare, Republic of Korea (HI13C0891) and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2013R1A1A1A05008333).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Hyun Jang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 712 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, GR., Jang, CH. Liquid crystal sensor for the detection of acetylcholine using acetylcholinesterase immobilized on a nanostructured polymeric surface. Colloid Polym Sci 293, 2771–2779 (2015). https://doi.org/10.1007/s00396-015-3648-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3648-y

Keywords

Navigation