Skip to main content
Log in

Detection of mRNA from Escherichia coli in drinking water on nanostructured polymeric surfaces using liquid crystals

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this study, we demonstrate the detection of mRNA from Escherichia coli in drinking water using thermotropic liquid crystals (LCs). After hybridization of complementary mRNA with the single-stranded DNA immobilized on a polymer substrate containing periodic sinusoidal wave patterns, the orientation of LCs transits from a uniform to a non-uniform state, thereby inducing a change in the optical response of LCs. The periodic sinusoidal features of the polymer substrate are obtained through buckling the poly-(dimethylsiloxane) slide on a cylindrical surface, followed by replicating the associated relief structures on a poly-(urethaneacrylate) surface, where a film of gold was deposited. Then, thiol-modified single-stranded DNA was functionalized on the gold film as an mRNA receptor. The formation of mRNA–single-stranded DNA complex, which covers the sinusoidal nanostructures on the surface, induces the orientational transition of LCs. This result indicates that LCs can be used to report the specific hybridization of mRNA with single-stranded DNA, which holds promise for the sensitive and label-free detection of viable bacterial pathogens in drinking water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gauthier F, Archibald F (2001) The ecology of “fecal indicator” bacteria commonly found in pulp and paper mill water systems. Water Res 35:2207–2218. doi:10.1016/s0043-1354(00)00506-6

    Article  CAS  Google Scholar 

  2. Edberg SC, Allen MJ, Smith DB (1988) National field evaluation of a defined substrate method for the simultaneous enumeration of total coliforms and Escherichia coli from drinking water: comparison with the standard multiple tube fermentation method. Appl Environ Microbiol 54:1595–1601

    CAS  Google Scholar 

  3. Lazcka O, Del Campo FJ, Muñoz FX (2007) Pathogen detection: a perspective of traditional methods and biosensors. Biosens Bioelectron 22:1205–1217. doi:10.1016/j.bios.2006.06.036

    Article  CAS  Google Scholar 

  4. Koets M, Van der Wijk T, Van Eemeren JTWM, Van Amerongen A, Prins MWJ (2008) Rapid DNA multi-analyte immunoassay on a magneto-resistance biosensor. Biosens Bioelectron 24:1893–1898. doi:10.1016/j.bios.2008.09.023

    Article  Google Scholar 

  5. Sadik OA, Aluoch AO, Zhou A (2009) Status of biomolecular recognition using electrochemical techniques. Biosens Bioelectron 24:2749–2765. doi:10.1016/j.bios.2008.10.003

    Article  CAS  Google Scholar 

  6. Keer JT, Birch L (2003) Molecular methods for the assessment of bacterial viability. J Microbiol Methods 53:175–183. doi:10.1016/s0167-7012(03)00025-3

    Article  CAS  Google Scholar 

  7. Elsholz B, Worl R, Blohm L, Albers J, Feucht H, Grunwald T, Jurgen B, Schweder T, Hintsche R (2006) Automated detection and quantitation of bacterial RNA by using electrical microarrays. Anal Chem 78:4794–4802. doi:10.1021/ac0600914

    Article  CAS  Google Scholar 

  8. Fang Z, Kelley SO (2009) Direct electrocatalytic mRNA detection using PNA-nanowire sensors. Anal Chem 81:612–617. doi:10.1021/ac801890f

    Article  CAS  Google Scholar 

  9. Sheridan GEC, Masters CI, Shallcross JA, Mackey BM (1998) Detection of mRNA by reverse transcription-PCR as an indicator of viability in Escherichia coli cells. Appl Environ Microbiol 64:1313–1318

    CAS  Google Scholar 

  10. Simpkins SA, Chan AB, Hays J, Pöpping B, Cook N (2000) An RNA transcription-based amplification technique (NASBA) for the detection of viable Salmonella enterica. Lett Appl Microbiol 30:75–79. doi:10.1046/j.1472-765x.2000.00670.x

    Article  CAS  Google Scholar 

  11. Sanvicens N, Pastells C, Pascual N, Marco M-P (2009) Nanoparticle-based biosensors for detection of pathogenic bacteria. Trends Anal Chem 28:1243–1252. doi:10.1016/j.trac.2009.08.002

    Article  CAS  Google Scholar 

  12. Conde J, de la Fuente JM, Baptista PV (2010) RNA quantification using gold nanoprobes—application to cancer diagnostics. J Nanobiotechnol 8:5. doi:10.1186/1477-3155-8-5

    Article  Google Scholar 

  13. Gupta VK, Skaife JJ, Dubrovsky TB, Abbott NL (1998) Optical amplification of ligand-receptor binding using liquid crystals. Science 279:2077–2080. doi:10.1126/science.279.5359.2077

    Article  CAS  Google Scholar 

  14. Brake JM, Mezera AD, Abbott NL (2003) Effect of surfactant structure on the orientation of liquid crystals at aqueous–liquid crystal interfaces. Langmuir 19:6436–6442. doi:10.1021/la034132s

    Article  CAS  Google Scholar 

  15. Hu QZ, Jang CH (2012) Using liquid crystals to report molecular interactions between cationic antimicrobial peptides and lipid membranes. Analyst 137:567–570. doi:10.1039/c1an15743d

    Article  CAS  Google Scholar 

  16. Hu QZ, Jang CH (2012) Using liquid crystals for the label-free detection of catalase at aqueous–LC interfaces. J Biotechnol 157:223–227. doi:10.1016/j.jbiotec.2011.11.010

    Article  CAS  Google Scholar 

  17. Gu Y, Nederberg F, Kange R, Shah RR, Hawker CJ, Moller M, Hedrick JL, Abbott NL (2002) Anchoring of liquid crystals on surface-initiated polymeric brushes. Chem Phys Chem 5:448–451. doi:10.1002/1439-7641(20020517)3:5<448::AID-CPHC448>3.0.CO;2-0

    Article  Google Scholar 

  18. Luk YY, Tingey ML, Hall DJ, Israel BA, Murphy CJ, Bertics PJ, Abbott NL (2003) Using liquid crystals to amplify protein–receptor interactions: design of surfaces with nanometer-scale topography that present histidine-tagged protein receptors. Langmuir 19:1671–1680. doi:10.1021/la026152k

    Article  CAS  Google Scholar 

  19. Kim SR, Shah RR, Abbott NL (2000) Orientations of liquid crystals on mechanically rubbed films of bovine serum albumin: a possible substrate for biomolecular assays based on liquid crystals. Anal Chem 72:4646–4653. doi:10.1021/ac000256n

    Article  CAS  Google Scholar 

  20. Jang CH, Tingey ML, Korpi NL, Wiepz GJ, Schiller JH, Bertics PJ, Abbott NL (2005) Using liquid crystals to report membrane proteins captured by affinity microcontact printing from cell lysates and membrane extracts. J Am Chem Soc 127:8912–8913. doi:10.1021/ja051079g

    Article  CAS  Google Scholar 

  21. Bi X, Lai SL, Yang KL (2009) Liquid crystal multiplexed protease assays reporting enzymatic activities as optical bar charts. Anal Chem 81:5503–5509. doi:10.1021/ac900793w

    Article  CAS  Google Scholar 

  22. Tan H, Yang S, Shen G, Yu R, Wu Z (2010) Signal-enhanced liquid-crystal DNA biosensors based on enzymatic metal deposition. Angew Chem Int Ed 49:8608–8611. doi:10.1002/anie.201004272

    Article  CAS  Google Scholar 

  23. Park SJ, Jang CH (2010) Using liquid crystals to detect DNA hybridization on polymeric surfaces with continuous wavy features. Nanotechnology 21:425502–425508. doi:10.1088/0957-4484/21/42/425502

    Article  Google Scholar 

  24. Lai SL, Tan WL, Yang KL (2011) Detection of DNA targets hybridized to solid surfaces using optical images of liquid crystals. ACS Appl Mater Interfaces 3:3389–3395. doi:10.1021/am200571h

    Article  CAS  Google Scholar 

  25. Han GR, Jang CH (2012) Measuring ligand–receptor binding events on polymeric surfaces with periodic wave patterns using liquid crystals. Colloids Surf B: Biointerfaces 94:89–94. doi:10.1016/j.colsurfb.2012.01.023

    Article  CAS  Google Scholar 

  26. Ahn SM, Jang CH (2010) Effective parameters for the precise control of thin film buckling on elastomeric substrates. Bull Korean Chem Soc 31:419–422. doi:10.5012/bkcs.2010.31.02.419

    Article  CAS  Google Scholar 

  27. Hu QZ, Jang CH (2011) Liquid crystal-based sensors for the detection of heavy metals using surface-immobilized urease. Colloids Surf B: Biointerfaces 88:622–626. doi:10.1016/j.colsurfb.2011.07.052

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (NRF-2013R1A1A1A05008333) and a grant of the Korean Health Technology R&D Project, Ministry of Health and Welfare, Republic of Korea (HI13C0891).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Hyun Jang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, SJ., Min, J., Hu, QZ. et al. Detection of mRNA from Escherichia coli in drinking water on nanostructured polymeric surfaces using liquid crystals. Colloid Polym Sci 292, 1163–1169 (2014). https://doi.org/10.1007/s00396-014-3162-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3162-7

Keywords

Navigation