Skip to main content
Log in

Novel cross-linking mechanism for producing PAA microgels synthesized by precipitation polymerization method

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A series of new cross-linkers, ethylene glycol diglycidyl ether (EGDGE), with new cross-linking mechanism, was utilized to prepare cross-linked poly(acrylic acid) microgels by precipitation polymerization method. All of the epoxy rings do not react with –COOH groups of PAA chains during polymerization stage; therefore, the unreacted epoxy rings would be reacted after polymerization stage (during sample drying time), which was named as “post curing stage.” The effect of cross-linker concentration, time, and temperature of post curing stage on the samples behaviors (i.e., swelling capacity, gel content, glass transition temperature, and rheological properties) were investigated. A new relationship between gelation rate in the post curing stage and epoxy content was defined. Also a relationship between average molecular weight of two successive cross-links (Mc), epoxy concentration ([epoxy]), and temperature of post curing stage (T pc ) was suggested. The microgel properties such as the rotational viscosity and rheological properties (that was synthesized by this novel cross-linking method) were compared to that of microgels that were synthesized by divinyl-type cross-linkers (trimethylol propane triacrylate (TMPTA)). The results show that the microgel properties which were synthesized by novel cross-linking mechanism are better than that of microgel properties by conventional cross-linking method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Ulanski P, Rosiak J (2004) Polymeric nano/microgels. Encycl Nanosci 8:845–846

    CAS  Google Scholar 

  2. Seiffert S (2014) J Polym Sci Part A Polym Chem 52:435–449

    Article  CAS  Google Scholar 

  3. Laarz E, Bergström L (2000) J Eur Ceram Soc 20:1–9

    Article  Google Scholar 

  4. Barry BW, Meyer MC (1979) Int J Pharm 2:27–40

    Article  CAS  Google Scholar 

  5. Inoue T, Chen G, Nakamae K, Hoffman AS (1997) J Control Release 49:167–176

    Article  CAS  Google Scholar 

  6. Bonacucina G, Martelli S, Palmieri GF (2004) Int J Pharm 282:115–130

    Article  CAS  Google Scholar 

  7. Bouhendi H, Haddadi-asl V, Rafizadeh M (2009) Iran Polym J 18:777–787

    CAS  Google Scholar 

  8. Ni H, Kawaguchi H (2004) J Polym Sci Part A Polym Chem 42:2833–2844

    Article  CAS  Google Scholar 

  9. Es-haghi H, Bouhendi H, Marandi GB, Zohurian-mehr MJ, Kabiri K (2013) React Funct Polym 73:524–530

    Article  CAS  Google Scholar 

  10. Es-haghi H, Bouhendi H, Marandi GB, Zohurian-mehr MJ, Kabiri K (2012) J Macromol Sci Part B 51:880–896

    Article  CAS  Google Scholar 

  11. Es-haghi H, Bouhendi H, Marandi GB, Zohurian-mehr MJ, Kabiri K (2010) Polym Plast Technol Eng 92:1257–1264

    Article  Google Scholar 

  12. Thomas J, Creecy C, McGinity J, Peppas N (2006) Polym Bull 20:11–20

    Article  Google Scholar 

  13. Dai Z, Yang X, Huang W (2007) Polym Int 230:224–230

    Article  Google Scholar 

  14. Bai F, Yang X, Li R, Huang B, Huang W (2006) Polymer 47:5775–5784

    Article  CAS  Google Scholar 

  15. Bai F, Huang B, Yang X, Huang W (2007) Eur Polym J 43:3923–3932

    Article  CAS  Google Scholar 

  16. Bunyakan C, Armanet L, Hunkeler D (1999) Polymer 40:6225–6234

    Article  CAS  Google Scholar 

  17. Poersch‐Panke H (1993) Die Angew 206:157–169

    Article  Google Scholar 

  18. Agarwal Y, Kaushik S, Kumar P (2007) J Macromol 44:877–880

    CAS  Google Scholar 

  19. Romack TJ, Maury EE, DeSimone JM (1996) Macromolecules 28:912–915

    Article  Google Scholar 

  20. Liu T, DeSimone J, Roberts G (2006) Polymer 47:4276–4281

    Article  CAS  Google Scholar 

  21. Kim J, Han Y (2008) Macromol Res 16:734–740

    Article  CAS  Google Scholar 

  22. Kim J, Cho B, Han Y, Kim Y (2009) Macromol Res 17:544–548

    Article  CAS  Google Scholar 

  23. Thomas JB, Tingsanchali JH, Rosales AM, Creecy CM, Mcginity JW, Peppas NA (2007) Polymer 48:5042–5048

    Article  CAS  Google Scholar 

  24. Lu X, Xu Y, Zheng C (2006) J Chem 775:767–775

    Google Scholar 

  25. Lee H, Neville K (1982) Handbook of epoxy resins. McGraw-Hill, New York

    Google Scholar 

  26. Shechter L, Wynstra J (1956) Ind Eng Chem 48:86–93

    Article  CAS  Google Scholar 

  27. Cudero MJC, Barrales-Rienda JM (1997) Polym Int 44:61–77

    Article  Google Scholar 

  28. Cudero MJC (1997) J Pol Sci Part A Pol Chem 34:1059–1072

    Article  Google Scholar 

  29. Cherdoud-Chihani A, Mouzali M, Abadie MJM (2003) J Appl Polym Sci 87:2033–2051

    Article  CAS  Google Scholar 

  30. Meure S, Wu DY, Furman SA (2010) Vib Spectrosc 52:10–15

    Article  CAS  Google Scholar 

  31. Chen Y, Tan H (2006) Carbohydr Res 341:887–896

    Article  CAS  Google Scholar 

  32. Madec P, Maréchal E (1983) Die Makromol Chemie 334:323–334

    Article  Google Scholar 

  33. Flory PJ, Rehner J (1943) J Chem Phys 11:512–520

    Article  CAS  Google Scholar 

  34. Xu J, Wu Y, Wang C, Wang Y (2008) J Polym Res 16:569–575

    Article  Google Scholar 

  35. Islam MT, Ciotti S, Ackermann C (2003) Pharm Res 21:1192–1199

    Article  Google Scholar 

  36. Kim JY, Song JY, Lee EJ, Park SK (2003) Colloid Polym Sci 281:614–623

    Article  CAS  Google Scholar 

  37. Ramzani MJ, Zohorian mehr MJ, Yousefi AA, Langrodi E, Kabiri K (2006) Polym Test 25:470–474

    Article  Google Scholar 

  38. Nae HN, Reichert WW (1992) Rheol Acta 31:351–360

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Bouhendi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kohestanian, M., Bouhendi, H. Novel cross-linking mechanism for producing PAA microgels synthesized by precipitation polymerization method. Colloid Polym Sci 293, 1983–1995 (2015). https://doi.org/10.1007/s00396-015-3563-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3563-2

Keywords

Navigation