Skip to main content
Log in

Preparation of biodegradable PCL particles via double emulsion evaporation method using ultrasound technique

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Polymeric nanoparticles have attracted growing attention because of their unique properties and extensive application. In this study, polycaprolactone (PCL) nanoparticles were prepared via double emulsion solvent evaporation-like process using power ultrasound, and the effects of various process parameters on particle size, zeta potential, and morphology were investigated and optimized. Nanoparticles (NPs) were prepared by two-step emulsification process. In the first step, the inner aqueous phase (W1) was homogenized with organic phase (PCL in dichloromethane) to obtain primary emulsion. In the second step, the primary emulsion was emulsified with outer aqueous phase (W2) containing polyvinyl alcohol (PVA) as stabilizer using power ultrasound, followed by evaporation of solvent which resulted in a particulate suspension at the end. Effects of various parameters like ultrasound exposure time and amplitude, outer aqueous phase volume, PVA concentration, and PCL content were investigated. It has been shown that, by increasing ultrasound exposure time, amplitude, and outer aqueous phase volume, the particle size decreases. Additionally, particle size was also related to amount of PCL and PVA concentration. Spherical NPs with smooth surfaces were observed by scanning electron microscopy (SEM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Rosset V, Ahmed N, Zaanoun I, Stella B, Fessi H, Elaissari A (2012) Elaboration of argan oil nanocapsules containing naproxen for cosmetic and transdermal local application. J Colloid Sci Biotechnol 1(2):218–224

    Article  Google Scholar 

  2. Campos EVR, de Melo NFS, de Paula E, Rosa AH, Fraceto LF (2013) Screening of conditions for the preparation of poly( −caprolactone) nanocapsules containing the local anesthetic articaine. J Colloid Sci Biotechnol 2(2):106–111

    Article  Google Scholar 

  3. Doustgani A, Farahani EV, Imani M, Doulabi AH (2012) Dexamethasone sodium phosphate release from chitosan nanoparticles prepared by ionic gelation method. J Colloid Sci Biotechnol 1(1):42–50

    Article  Google Scholar 

  4. Palomino D, Yamunake C, Coustumer PL, Stoll S (2013) Stability of TiO2 nanoparticles in presence of fulvic acids. Importance of pH. J Colloid Sci Biotechnol 2(1):62–69

    Article  Google Scholar 

  5. Medina C, Santos-Martinez MJ, Radomski A, Corrigan OI, Radomski MW (2007) Nanoparticles: pharmacological and toxicological significance. Br J Pharmacol 150(5):552–558

    Article  CAS  Google Scholar 

  6. Florence AT, Whitehill D (1982) The formulation and stability of multiple emulsions. Int J Pharm 11(4):277–308

    Article  CAS  Google Scholar 

  7. Giri TK, Choudhary C, Ajazuddin, Alexander A, Badwaik H, Tripathi DK (2013) Prospects of pharmaceuticals and biopharmaceuticals loaded microparticles prepared by double emulsion technique for controlled delivery. Saudi Pharm J 21(2):125–141

    Article  Google Scholar 

  8. Ayoub M, Ahmed N, Kalaji N, Charcosset C, Magdy A, Fessi H, Elaissari A (2011) Study of the effect of formulation parameters/variables to control the nanoencapsulation of hydrophilic drug via double emulsion technique. J Biomed Nanotechnol 7(2):255–262

    Article  CAS  Google Scholar 

  9. Nedovic V, Kalusevic A, Manojlovic V, Levic S, Bugarski B (2011) An overview of encapsulation technologies for food applications. Procedia Food Sci 1:1806–1815

    Article  CAS  Google Scholar 

  10. Khan AU, Ahmad NM, Mahmood N (2012) Rheological studies on stabilised zirconia aqueous suspensions. J Colloid Sci Biotechnol 1(2):175–184

    Article  Google Scholar 

  11. Malacrida CR, Ferreira S, Nicoletti Telis VR (2013) Stability at different temperatures of turmeric oleoresin encapsulated in maltodextrin/gelatin matrices by freeze-drying. J Colloid Sci Biotechnol 2(2):100–105

    Article  Google Scholar 

  12. Nakada Y, Fattal E, Foulquier M, Couvreur P (1996) Pharmacokinetics and biodistribution of oligonucleotide adsorbed onto poly(isobutylcyanoacrylate) nanoparticles after intravenous administration in mice. Pharm Res 13(1):38–43

    Article  CAS  Google Scholar 

  13. Seifriz W (1924) Studies in Emulsions. III-V. J Phys Chem 29(6):738–749

    Article  Google Scholar 

  14. Garti N (1997) Double emulsions — scope, limitations and new achievements. Colloids Surf Physicochem Eng Asp 123–124:233–246

    Article  Google Scholar 

  15. Khan AY, Talegaonkar S, Iqbal Z, Ahmed FJ, Khar RK (2006) Multiple emulsions: an overview. Curr Drug Deliv 3(4):429–443

    Article  CAS  Google Scholar 

  16. Walstra P (1993) Principles of emulsion formation. Chem Eng Sci 48(2):333–349

    Article  CAS  Google Scholar 

  17. Iqbal M, Akhtar N (2013) Formulation and Stability of a Cosmetic Emulsion Containing Extract of Strawberry. J Colloid Sci Biotechnol 2(4):309–314

    Article  Google Scholar 

  18. Jafari SM, Assadpoor E, He Y, Bhandari B (2008) Re-coalescence of emulsion droplets during high-energy emulsification. Food Hydrocoll 22(7):1191–1202

    Article  CAS  Google Scholar 

  19. Wei B, Wang S, Song H, Liu H, Li J, Liu N (2009) A review of recent progress in preparation of hollow polymer microspheres. Pet Sci 6(3):306–312

    Article  CAS  Google Scholar 

  20. Capek I (2004) Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions. Adv Colloid Interf Sci 110(1–2):49–74

    Article  CAS  Google Scholar 

  21. Fu G-D, Li GL, Neoh KG, Kang ET (2011) Hollow polymeric nanostructures—Synthesis, morphology and function. Prog Polym Sci 36(1):127–167

    Article  CAS  Google Scholar 

  22. Zambaux M, Bonneaux F, Gref R, Maincent P, Dellacherie E, Alonso M, Labrude P, Vigneron C (1998) Influence of experimental parameters on the characteristics of poly(lactic acid) nanoparticles prepared by a double emulsion method. J Control Release 50(1–3):31–40

    Article  CAS  Google Scholar 

  23. Ibraheem D, Iqbal M, Agusti G, Fessi H, Elaissari A (2014) Effects of process parameters on the colloidal properties of polycaprolactone microparticles prepared by double emulsion like process. Colloids Surf Physicochem Eng Asp 445:79–91

    Article  CAS  Google Scholar 

  24. Lamprecht A, Ubrich N, Hombreiro Pérez M, Lehr C-M, Hoffman M, Maincent P (2000) Influences of process parameters on nanoparticle preparation performed by a double emulsion pressure homogenization technique. Int J Pharm 196(2):177–182

    Article  CAS  Google Scholar 

  25. Lowery JL, Datta N, Rutledge GC (2010) Effect of fiber diameter, pore size and seeding method on growth of human dermal fibroblasts in electrospun poly(ɛ-caprolactone) fibrous mats. Biomaterials 31(3):491–504

    Article  CAS  Google Scholar 

  26. Zengshuan Ma AH (2008) Micelles of poly(ethylene oxide)-b-poly(epsilon-caprolactone) as vehicles for the solubilization, stabilization, and controlled delivery of curcumin. J Biomed Mater Res A 86(2):300–310

    Google Scholar 

  27. Fong JW (1981) French Patent no, FRA11694

  28. Xia C, Xiao C (2012) Preparation and characterization of dual responsive sodium alginate-g-poly(vinyl alcohol) hydrogel. J Appl Polym Sci 123(4):2244–2249

    Article  CAS  Google Scholar 

  29. Behrend O, Ax K, Schubert H (2000) Influence of continuous phase viscosity on emulsification by ultrasound. Ultrason Sonochem 7(2):77–85

    Article  CAS  Google Scholar 

  30. Abismaïl B, Canselier JP, Wilhelm AM, Delmas H, Gourdon C (1999) Emulsification by ultrasound: drop size distribution and stability. Ultrason Sonochem 6(1–2):75–83

    Article  Google Scholar 

  31. Tadros T, Izquierdo P, Esquena J, Solans C (2004) Formation and stability of nano-emulsions. Adv Colloid Interface Sci 108–109:303–318

    Article  Google Scholar 

  32. Li MK, Fogler HS (1978) Acoustic emulsification. Part 2. Breakup of the large primary oil droplets in a water medium. J Fluid Mech 88(03):513–528

    Article  CAS  Google Scholar 

  33. Mason TJ (1996) Advances in Sonochemistry. Elsevier

  34. Vilkhu K, Manasseh R, Mawson R, Ashokkumar M (2011) Ultrasonic recovery and modification of food ingredients. In: Feng H, Barbosa-Canovas G, Weiss J (eds) Ultrasound technologies for food and bioprocessing. Springer, New York, pp 345–368

    Chapter  Google Scholar 

  35. Cucheval A, Chow RCY (2008) A study on the emulsification of oil by power ultrasound. Ultrason Sonochem 15(5):916–920

    Article  CAS  Google Scholar 

  36. Jafari SM, He Y, Bhandari B (2007) Production of sub-micron emulsions by ultrasound and microfluidization techniques. J Food Eng 82(4):478–488

    Article  Google Scholar 

  37. Mahdi Jafari S, He Y, Bhandari B (2006) Nano-Emulsion Production by Sonication and Microfluidization—A Comparison. Int J Food Prop 9(3):475–485

    Article  Google Scholar 

  38. Pisani E, Fattal E, Paris J, Ringard C, Rosilio V, Tsapis N (2008) Surfactant dependent morphology of polymeric capsules of perfluorooctyl bromide: influence of polymer adsorption at the dichloromethane-water interface. J Colloid Interface Sci 326(1):66–71

    Article  CAS  Google Scholar 

  39. Alex R, Bodmeier R (1990) Encapsulation of water-soluble drugs by a modified solvent evaporation method. I. Effect of process and formulation variables on drug entrapment. J Microencapsul 7(3):347–355

    Article  CAS  Google Scholar 

  40. Gaikwad SG, Pandit AB (2008) Ultrasound emulsification: Effect of ultrasonic and physicochemical properties on dispersed phase volume and droplet size. Ultrason Sonochem 15(4):554–563

    Article  CAS  Google Scholar 

  41. Tal-Figiel B (2007) The Formation of Stable W/O, O/W, W/O/W Cosmetic Emulsions in an Ultrasonic Field. Chem Eng Res Des 85(5):730–734

    Article  CAS  Google Scholar 

  42. Jalil R, Nixon JR (1990) Biodegradable poly(lactic acid) and poly(lactide-co-glycolide) microcapsules: problems associated with preparative techniques and release properties. J Microencapsul 7(3):297–325

    Article  CAS  Google Scholar 

  43. Sánchez-Silva L, Rodríguez JF, Sánchez P (2011) Influence of different suspension stabilizers on the preparation of Rubitherm RT31 microcapsules. Colloids Surf Physicochem Eng Asp 390(1–3):62–66

    Article  Google Scholar 

  44. Mora-Huertas CE, Fessi H, Elaissari A (2011) Influence of process and formulation parameters on the formation of submicron particles by solvent displacement and emulsification–diffusion methods: Critical comparison. Adv Colloid Interface Sci 163(2):90–122

    Article  CAS  Google Scholar 

  45. Fong JW (1990) Process for preparation of microspheres. US4933105 A

Download references

Acknowledgments

I would like to acknowledge the financial support provided by Gomal University D.I khan and Higher Education Commission of Pakistan (HEC) for this work. Infrastructure support from LAGEP laboratory, University Lyon 1 is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelhamid Elaissari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, M., Valour, JP., Fessi, H. et al. Preparation of biodegradable PCL particles via double emulsion evaporation method using ultrasound technique. Colloid Polym Sci 293, 861–873 (2015). https://doi.org/10.1007/s00396-014-3464-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3464-9

Keywords

Navigation