Skip to main content
Log in

Colloidal crystallization of poly(n-butyl acrylate) spheres in deionized aqueous suspension and the melting during dryness

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Colloidal crystallization of poly(n-butyl acrylate) spheres (ammonium persulfate-poly(n-butyl acrylate) (APS-PBA), 320 ± 50 nm in diameter) was studied in deionized aqueous suspension. Coexistence of the crystal and distorted crystal structures was observed by the reflection spectroscopy. The critical concentrations of melting were ca. 0.01 and 0.03 in volume fraction in the presence of ion-exchange resins and in their absence, respectively. Crystal structures melted away during dryness by fusion of each spheres on the substrates, i.e., cover glass, watch glass, and Petri glass dish. Thickness profiles of the dried film changed sharply from the broad ring to the round hill as sphere concentration increased. The sharpness parameter S was evaluated from the ratio of the film size (diameter) against the full width at half maximum in the thickness profiles of the ring and/or the round hill. The S values decreased sharply from 30 to 1.2 as initial volume fraction of the spheres increased from 0.0005 to 0.1. The S values were significantly low compared with those of typical colloidal spheres, which supports the aggregate and/or fusion of the spheres resulting in their low convectional flow during dryness. The round hill profile at the high sphere concentration also supports that the fusion takes place easier during dryness. Microscopic observation of the dried film supports the formation of the homogeneous fused structures. It was clarified that colloidal crystallization of APS-PBA spheres takes place by the extended electrical double layers around the spheres like typical colloidal crystals of hard spheres. However, APS-PBA spheres are not so stable by the fusion especially at the high sphere concentrations and on the substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Vanderhoff W, van de Hul HJ, Tausk RJM, Overbeek JTG (1970) In: Goldfinger G (ed) Clean surfaces: Their preparation and characterization for interfacial studies. Marcel Dekker, New York, pp 15–44

    Google Scholar 

  2. Hiltner PA, Papir YS, Krieger IM (1971) Diffraction of light by nonaqueous ordered suspensions. J Phys Chem 75:1881–1886

    Article  CAS  Google Scholar 

  3. Kose A, Ozaki M, Takano K, Kobayashi Y, Hachisu S (1973) Direct observation of ordered latex suspension by metallurgical microscope. J Colloid Interface Sci 44:330–338

    Article  CAS  Google Scholar 

  4. Williams R, Crandall RS, Wojtowicz PJ (1976) Melting of crystalline suspensions of polystyrene spheres. Phys Rev Lett 37:348–351

    Article  Google Scholar 

  5. Mitaku S, Ohtsuki T, Kishimoto A, Okano K (1980) Dynamic properties of concentrated suspensions of charged polystyrene spheres. Biophys Chem 11:411–416

    Article  CAS  Google Scholar 

  6. Lindsay HM, Chaikin PM (1982) Elastic properties of colloidal crystals and gases. J Chem Phys 76:3774–3781

    Article  CAS  Google Scholar 

  7. Pieranski P (1983) Colloidal crystals. Contemp Phys 24:25–73

    Article  CAS  Google Scholar 

  8. Ottewill RH (1985) Dispersed systems-recent developments. Ber Bunsenges Phys Chem 89:517–525

    Article  CAS  Google Scholar 

  9. Aastuen DJW, Clark NA, Cotter LK, Ackerson BJ (1986) Nucleation and growth of colloidal crystals. Phys Rev Lett 57:1733–1736

    Article  CAS  Google Scholar 

  10. Pusey PN, van Megen W (1986) Phase behavior of concentrated suspensions of nearly hard colloidal spheres. Nature (London) 320:340–342

    Article  CAS  Google Scholar 

  11. Okubo T (1988) Extraordinary behavior in the structural properties of colloidal macroions in deionized suspension and the importance of the Debye screening length. Acc Chem Res 21:281–286

    Article  CAS  Google Scholar 

  12. Russel WB, Saville DA, Schowalter WR (1989) Colloidal dispersions. Cambridge Univ Press, Cambridge, pp 329–365, chapt 10

    Book  Google Scholar 

  13. Sood AK (1991) Structural ordering in colloidal suspensions. Solid State Phys 45:1–73

    CAS  Google Scholar 

  14. Okubo T (1988) Time-resolved analysis of a crystal-like structure-forming process of a monodisperse polystyrene sphere as studied by rapid-scanning spectrophotometry. J Chem Soc Faraday Trans 1(84):1163–1169

    Article  Google Scholar 

  15. Monovoukas Y, Gast AP (1989) The experimental phase diagram of charged colloidal suspensions. J Colloid Interface Sci 128:533–548

    Article  CAS  Google Scholar 

  16. Okubo T (1991) Melting temperature of colloidal crystals of polystyrene spheres. J Chem Phys 95:3690–3697

    Article  CAS  Google Scholar 

  17. Okubo T (1992) Giant single crystals of colloidal spheres in deionized and diluted suspension. Naturwissenschaften 79:317–320

    Article  CAS  Google Scholar 

  18. Okubo T (1993) Polymer colloidal crystals. Prog Polym Sci 18:481–517

    Article  CAS  Google Scholar 

  19. Simon R, Palberg T, Leiderer P (1993) Structurally determined Brownian dynamics in ordered colloidal deionized suspensions. The deviation of the observed crystalline phases. J Chem Phys 99:3030–3036

    Article  CAS  Google Scholar 

  20. Okubo T (1994) Giant colloidal single crystals of polystyrene and silica spheres in deionized suspension. Langmuir 10:1695–1702

    Article  CAS  Google Scholar 

  21. Okubo T (1994) Phase diagram of ionic colloidal crystals. In: Schmitz KS (ed) Macro-ion characterization. From dilute solutions to complex fluids. Am Chem Soc, Washington DC, pp 364–380

  22. Okubo T (1996) Importance of the electrical double layers in structural and diffusional properties of deionized colloidal suspension. Colloids Surf A 109:77–88

    Article  CAS  Google Scholar 

  23. Okubo T, Tsuchida A (2002) Spectroscopy of giant colloidal crystals. Forma 17:141–753

    Google Scholar 

  24. Okubo T (2005) Colloidal crystal. In: Kinoshita S, Yoshioka S (eds) Structural colors in biological systems. Principles and applications. Osaka Univ Press, Osaka, pp 267–286

    Google Scholar 

  25. Harkless CR, Singh MA, Nagler SE, Stephenson GB, Jordan-Sweet JL (1990) Small-angle X-ray scattering study of ordering kinetics in a block copolymer. Phys Rev Lett 64:2285–2288

    Article  CAS  Google Scholar 

  26. Dhont JKG, Smits C, Lekkerkerker HNW (1992) A time resolved static light scattering study on nucleation and crystallization in a colloidal system. J Colloid Interface Sci 152:386–401

    Article  CAS  Google Scholar 

  27. Wurth N, Schwarz J, Culis F, Leiderer P, Palberg T (1995) Growth kinetics of body centered cubic colloidal crystals. Phys Rev E 52:6415–6423

    Article  Google Scholar 

  28. Gierenz G, Karmann W (eds) (2008) Adhesives and adhesive tapes. Wiley-VCH, Weinheim

    Google Scholar 

  29. Possart W (ed) (2005) Adhesion: Current research and applications. Wiley-VCH, Weinheim

    Google Scholar 

  30. Okubo T (2006) Drying dissipative structures of colloidal dispersions. In: Stoylov SP, Stoimenova MV (eds) Molecular and colloidal electrooptics. CRC Press, Taylor & Francis, New York, pp 573–589

    Google Scholar 

  31. Okubo T (2008) Convectional, sedimentation and drying dissipative patterns of colloidal dispersions and solutions. In: Nagarajan R, Hatton TA (eds) Nanoparticles: Syntheses, stabilization, passivation and functionalization. ACS Book, Washington DC, pp 256–270

    Google Scholar 

  32. Okubo T (2010) Dissipative structure in the course of drying suspensions and solutions. Macromol Symp 288:67–77

    Article  CAS  Google Scholar 

  33. Okubo T, Okamoto J, Takahashi S, Tsuchida A (2009) Drying dissipative structures of aqueous solution of poly (ethylene glycol) on a cover glass, a watch glass and a glass dish. Colloid Polym Sci 287:933–942

    Article  CAS  Google Scholar 

  34. Okubo T, Hagiwara A, Kitano H, Okamoto J, Takahashi S, Tsuchida A (2009) Dissipative crystallization of aqueous solution of sodium polymethacrylate. Colloid Polym Sci 287:1155–1165

    Article  CAS  Google Scholar 

  35. Okubo T, Mizutani M, Takahashi S, Tsuchida A (2010) Dissipative crystallization of aqueous solutions of hydroxypropyl cellulose. Colloid Polym Sci 288:1551–1559

    Article  CAS  Google Scholar 

  36. Okubo T, Mizutani M, Takahashi S, Tsuchida A (2010) Dissipative crystallization of sodium salt of deoxyribonucleic acid. Colloid Polym Sci 288:1435–1444

    Article  CAS  Google Scholar 

  37. Okubo T (2011) Dissipative crystallization of sodium salts of carboxymethyl cellulose. Colloid Polym Sci 289:1205–1213

    Article  CAS  Google Scholar 

  38. Okubo T, Takahashi S, Tsuchida A (2011) Dissipative crystallization of potassium salt of poly (riboadenylic acid). Colloids Surf B 87:11–17

    Article  CAS  Google Scholar 

  39. Okubo T (2011) Dissipative crystallization of aqueous mixtures of potassium salts of poly (riboadenylic acid) and poly (ribouridylic acid). Colloids Surf B 87:439–446

    Article  CAS  Google Scholar 

  40. Okubo T, Suzuki D, Yamagata T, Katsuno A, Mizutani M, Kimura H, Tsuchida A (2011) Drying dissipative structures of thermo-sensitive gel spheres of poly (N-isopropyl acrylamide). Colloid Polym Sci 289:807–816

    Article  CAS  Google Scholar 

  41. Okubo T, Suzuki D, Tsuchida A (2012) Drying dissipative structures of thermo-sensitive gel spheres of poly (N-isopropyl acrylamide) with low degree of cross-linking. Colloid Polym Sci 290:411–421

    Article  CAS  Google Scholar 

  42. Okubo T, Suzuki D, Tsuchida A (2012) Drying dissipative structures of thermo-sensitive gel spheres of poly (N-isopropyl acrylamide). Influence of degree of cross-linking. Colloid Polym Sci 290:867–877

    Article  CAS  Google Scholar 

  43. Okubo T, Suzuki D, Tsuchida A (2012) Drying dissipative structures of thermo-sensitive gel spheres of poly (N-isopropyl acrylamide). Influence of gel size. Colloid Polym Sci 290:1901–1911

    Article  CAS  Google Scholar 

  44. Okubo T, Fujii S, Aono K, Nakamura Y (2013) Drying dissipative structures of lightly cross-linked poly (2-vinyl pyridine) cationic gel spheres stabilized with poly (ethylene glycol) in the deionized aqueous suspension. Colloid Polym Sci 291:1019–1030

    Article  CAS  Google Scholar 

  45. Okubo T, Fujii S, Nakamura Y, Drying dissipative structures of cationic gel spheres of lightly cross-linked poly (2-vinyl pyridine) (170~180 nm in diameter) in the deionized aqueous suspension. Colloid Polym Sci 291:2805–2813

  46. Yoshimura S, Hachisu S (1985) Ordered formation in binary mixtures of monodisperse latexes. J Phys (Paris) 46(C3):115–126

    Article  Google Scholar 

  47. Murray MJ, Sanders JV (1980) Closed-packed structures of spheres of two different sizes II. The packing densities of likely arrangements. Phil Mag A42:721–740

    Article  Google Scholar 

  48. Okubo T, Fujita H (1996) Phase diagram of alloy crystals in the exhaustively deionized suspensions of binary mixtures of colloidal spheres. Colloid Polym Sci 274:368–374

    Article  CAS  Google Scholar 

  49. Okubo T (2013) Distorted colloidal crystal of similar-sized aggregates (1.5 μm in diameter) of nano-sized diamond particles (4 nm in diameter). Colloid Polym Sci 291:1623–1629

    Article  CAS  Google Scholar 

  50. Okubo T, Suzuki D, Shibata K, Tsuchida A (2012) Kinetic studies of colloidal crystallization of thermo-sensitive gel spheres of poly(N-isopropylacrylamide). Colloid Polym Sci 290:1403–1412

    Article  CAS  Google Scholar 

  51. Okubo T (1986) Ordered solution structure of a monodispersed polystyrene latex as studied by the reflection specrum method. J Chem Soc Faraday Trans 1 82:3163–3173

    Article  CAS  Google Scholar 

  52. Yamaguchi T, Kimura K, Tsuchida A, Okubo T, Matsumoto M (2005) Drying dissipative structures of the aqueous suspensions of monodispersed bentonite particles. Colloid Polym Sci 283:1123–1130

    Article  CAS  Google Scholar 

  53. Ida T (2008) New measures of sharpness for symmetric powder diffraction peak profiles. J Appl Crystallogr 41:393–401

    Article  CAS  Google Scholar 

  54. Okubo T, Okamoto J, Tsuchida A (2008) Convectional, sedimentation and drying dissipative patterns of colloidal crystals of poly(methylmethacrylate) on a cover glass. Colloid Polym Sci 286:1123–1133

    Article  CAS  Google Scholar 

  55. Okubo T, Okuda S, Kimura H (2002) Dissipative structures formed in the course of drying the colloidal crystals of silica spheres on a cover glass. Colloid Polym Sci 280:454–460

    Article  CAS  Google Scholar 

  56. Okubo T, Yamada T, Kimura K, Tsuchida A (2005) Drying dissipative structures of the deionized aqueous suspensions of colloidal silica spheres ranging from 29 nm to 1 μm in diameter. Colloid Polym Sci 283:1007–1015

    Article  CAS  Google Scholar 

  57. Okubo T, Nakagawa N, Tsuchida A (2007) Drying dissipative patterns of colloidal crystals of silica spheres in organic solvents. Colloid Polym Sci 285:1247–1255

    Article  CAS  Google Scholar 

  58. Okubo T, Kimura K, Kimura H (2002) Dissipative structures formed in the course of drying the colloidal crystals of monodispersed polystyrene spheres on a cover glass. Colloid Polym Sci 280:1001–1008

    Article  CAS  Google Scholar 

Download references

Acknowledgments

S.F. acknowledges Grant-in-Aid for Challenging Exploratory Research (project no. 24655212) for Japan Society for Promotion of Science, and Grant-in-Aid for Scientific Research on Innovative Areas “Engineering Neo-Biomimetics,” “New Polymeric Materials Based on Element-Blocks,” and “Molecular Soft Interface Science” from the Ministry of Education, Culture, Sports, Science, and Technology of Japan. A.T. thanks Grants-in-Aid from the Japan Society for the Promotion of Science for Scientific Research (B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsuneo Okubo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujii, S., Nakamura, Y., Tsuchida, A. et al. Colloidal crystallization of poly(n-butyl acrylate) spheres in deionized aqueous suspension and the melting during dryness. Colloid Polym Sci 292, 2303–2310 (2014). https://doi.org/10.1007/s00396-014-3277-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3277-x

Keywords

Navigation