Skip to main content
Log in

Electroactive shape memory effect of radiation cross-linked SBS/LLDPE composites filled with carbon black

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The poly(styrene-b-butadiene-b-styrene) (SBS) triblock copolymer and linear low-density polyethylene (LLDPE) were blended and irradiated by γ rays to prepare shape memory polymer (SMP). Different weight fractions of conductive carbon black (CB) were filled into SMP to form a novel electroactive shape memory CB/SBS/LLDPE composite. The CB reinforced radiation cross-linked SBS/LLDPE blends for the improvement of the mechanical weakness and conductivity of SBS/LLDPE bulk and for wide practical engineering uses. The electroactive shape memory CB/SBS/LLDPE composites were investigated by electrical properties, mechanical, dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and electroactive shape memory effects. It is found that the tensile strength, storage modulus, and resistance against mechanical and thermal mechanical cycle loading in the developed composites increased due to the role of reinforcement of CB. The melting temperatures and volume resistance of the composites decreased with the increment of CB for excellent electrical conductivity of CB. The electroactive shape memory effects of developed CB/SBS/LLDPE composites were affected by CB weight fractions and applied voltage, while good shape recovery could be obtained in the shape recovery test. When the CB fraction is more than 5 wt%, full recovery can be observed after tens of seconds and shape recovery speed increased with CB fractions and voltage increasing. However, the shape recovery rate decreases slightly with increment of cycle times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Meng QH, Hu JL (2009) A review of shape memory polymer composites and blends. Compos A Appl Sci Manuf 40(11):1661–1672

    Article  Google Scholar 

  2. Liu H et al (2011) Thermostimulative shape memory effect of linear low-density polyethylene/polypropylene (LLLDPE/PP) blends compatibilized by crosslinked LLLDPE/PP blend (LLLDPE-PP). J Appl Polym Sci 122(4):2512–2519

    Article  CAS  Google Scholar 

  3. Gunes IS, Cao F, Jana SC (2008) Evaluation of nanoparticulate fillers for development of shape memory polyurethane nanocomposites. Polymer 49(9):2223–2234

    Article  CAS  Google Scholar 

  4. Liu YJ et al (2009) Review of electro-active shape-memory polymer composite. Compos Sci Technol 69(13):2064–2068

    Article  CAS  Google Scholar 

  5. Wang W et al (2011) Light-driven soft actuators based on photoresponsive polymer materials. Prog Chem 23(6):1165–1173

    CAS  Google Scholar 

  6. Meiorin C, Mosiewicki MA, Aranguren MI (2013) Ageing of thermosets based on tung oil/styrene/divinylbenzene. Polym Test 32(2):249–255

    Article  CAS  Google Scholar 

  7. McClung AJW et al (2011) Non-contact technique for characterizing full-field surface deformation of shape memory polymers at elevated and room temperatures. Polym Test 30(1):140–149

    Article  CAS  Google Scholar 

  8. Lu YC et al (2011) Microscale thermomechanical characterization of environmentally conditioned shape memory polymers. Polym Test 30(5):563–570

    Article  CAS  Google Scholar 

  9. Rogers N, Khan F (2013) Characterization of deformation induced changes to conductivity in an electrically triggered shape memory polymer. Polym Test 32(1):71–77

    Article  CAS  Google Scholar 

  10. Li J et al (2011) Dynamic mechanical behavior of photo-cross-linked shape-memory elastomers. Macromolecules 44(13):5336–5343

    Article  CAS  Google Scholar 

  11. Voit W, Ware T, Gall K (2010) Radiation crosslinked shape-memory polymers. Polymer 51(15):3551–3559

    Article  CAS  Google Scholar 

  12. Oh SM et al (2013) The modification of graphene with alcohols and its use in shape memory polyurethane composites. Polym Int 62(1):54–63

    Article  CAS  Google Scholar 

  13. Lendlein A, Langer R (2002) Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296(5573):1673–1676

    Article  Google Scholar 

  14. Sokolowski W et al (2007) Medical applications of shape memory polymers. Biomed Mater 2(1):23–27

    Article  Google Scholar 

  15. De Nardo L et al (2011) Shape memory polymer cellular solid design for medical applications. Smart Mater Struct 20(3):035004

    Article  Google Scholar 

  16. Lan X et al (2009) Fiber reinforced shape-memory polymer composite and its application in a deployable hinge. Smart Mater Struct 18(2):024002

    Article  Google Scholar 

  17. Sahoo NG, Jung YC, Cho JW (2007) Electroactive shape memory effect of polyurethane composites filled with carbon nanotubes and conducting polymer. Mater Manuf Process 22(4):419–423

    Article  CAS  Google Scholar 

  18. Li FK et al (2000) Polyurethane/conducting carbon black composites: structure, electric conductivity, strain recovery behavior, and their relationships. J Appl Polym Sci 75(1):68–77

    Article  CAS  Google Scholar 

  19. Leng JS et al (2009) Electroactive thermoset shape memory polymer nanocomposite filled with nanocarbon powders. Smart Mater Struct 18(7):074003

    Article  Google Scholar 

  20. Leng JS et al (2008) Significantly reducing electrical resistivity by forming conductive Ni chains in a polyurethane shape-memory polymer/carbon-black composite. Appl Phys Lett 92(20):204101

    Article  Google Scholar 

  21. Viry L et al (2010) Nanotube fibers for electromechanical and shape memory actuators. J Mater Chem 20(17):3487–3495

    Article  CAS  Google Scholar 

  22. Leng JS et al (2011) Shape-memory polymers and their composites: stimulus methods and applications. Prog Mater Sci 56(7):1077–1135

    Article  CAS  Google Scholar 

  23. Amirian M et al (2012) Enhanced shape memory effect of poly(L-lactide-co-epsilon-caprolactone) biodegradable copolymer reinforced with functionalized MWCNTs. J Polym Res 19(2):1–10

    Article  CAS  Google Scholar 

  24. Huang Y, Liang JJ, Chen YS (2012) The application of graphene based materials for actuators. J Mater Chem 22(9):3671–3679

    Article  CAS  Google Scholar 

  25. Meng H, Li GQ (2013) A review of stimuli-responsive shape memory polymer composites. Polymer 54(9):2199–2221

    Article  CAS  Google Scholar 

  26. Zhang PF, Li GQ (2013) Structural relaxation behavior of strain hardened shape memory polymer fibers for self-healing applications. J Polym Sci B Polym Phys 51(12):966–977

    Article  CAS  Google Scholar 

  27. Kim MJ, Kim BK (2013) Actuation design for high-performance shape memory polyurethanes. J Polym Sci B Polym Phys 51(20):1473–1479

    Article  CAS  Google Scholar 

  28. Cai Y et al (2013) Magnetically-sensitive shape memory polyurethane composites crosslinked with multi-walled carbon nanotubes. Compos A Appl Sci Manuf 53:16–23

    Article  CAS  Google Scholar 

  29. Zhang QL et al (2012) A new strategy to prepare polymer composites with versatile shape memory properties. J Mater Chem 22(47):24776–24782

    Article  CAS  Google Scholar 

  30. Tandon GP et al (2009) Durability assessment of styrene- and epoxy-based shape-memory polymer resins. J Intell Mater Syst Struct 20(17):2127–2143

    Article  CAS  Google Scholar 

  31. Khan F et al (2008) Characterization of shear deformation and strain recovery behavior in shape memory polymers. Polym Test 27(4):498–503

    Article  CAS  Google Scholar 

  32. Hearon K et al (2013) The effect of free radical inhibitor on the sensitized radiation crosslinking and thermal processing stabilization of polyurethane shape memory polymers. Radiat Phys Chem 83:111–121

    Article  CAS  Google Scholar 

  33. Dakin V (1995) Elastic properties of radiation cross-linked block copolymers. Radiat Phys Chem 45(5):715–718

    Article  CAS  Google Scholar 

  34. Khonakdar HA et al (2007) Investigation and modeling of temperature dependence recovery behavior of shape-memory crosslinked polyethylene. Macromol Theory Simul 16(1):43–52

    Article  CAS  Google Scholar 

  35. Lu HB et al (2010) Mechanical and shape-memory behavior of shape memory polymer composites with hybrid fillers. Polym Int 59(6):766–771

    CAS  Google Scholar 

  36. Wei K et al (2013) An investigation on shape memory behaviours of hydro-epoxy/glass fibre composites. Compos B Eng 51:169–174

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangming Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhu, G., Cui, X. et al. Electroactive shape memory effect of radiation cross-linked SBS/LLDPE composites filled with carbon black. Colloid Polym Sci 292, 2311–2317 (2014). https://doi.org/10.1007/s00396-014-3266-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3266-0

Keywords

Navigation