Skip to main content
Log in

Biomimetic star-shaped porphyrin-cored poly(l-lactide)-b-glycopolymer block copolymers for targeted photodynamic therapy

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Porphyrin-cored poly(l-lactide) (SPPLA) was successfully synthesized from ring-opening polymerization (ROP) of l-lactide initiated with porphyrin core. Then, SPPLA was coupled with benzylsulfanylthiocarbonylsufanylpropionic acid (BSPA), and a macro-reversible addition-fragmentation chain transfer (macroRAFT) polymerization agent SPPLA-BSPA was obtained. Finally, star-shaped porphyrin-cored poly(l-lactide)-b-poly(gluconamidoethyl methacrylate) (SPPLA-b-PGAMA) block copolymers were synthesized via RAFT of unprotected gluconamidoethyl methacrylate (GAMA) in 1-methyl-2-pyrrolidinone (NMP) solution at 70 °C. The structure of this block copolymer was thoroughly studied by nuclear magnetic resonance spectroscopy (NMR), gel permeation chromatography (GPC), and differential scanning calorimetry (DSC). Under the irradiation, such SPPLA-b-PGAMA copolymer exhibits efficient singlet oxygen generation and indicates high fluorescence quantum yields. Notably, with UV–vis and dynamic light scattering (DLS) analysis, SPPLA-b-PGAMA showed a very specific recognition with concanavalin A (ConA). Particularly, MTT shows that the cytotoxicity of SPPLA-b-PGAMA against COS-7 cells was very low and, when given a longer irradiation time, more BEL-7402 cancer cells died, which will be investigated in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Huang Z (2005) Technol Cancer Res Treat 4:283

    CAS  Google Scholar 

  2. Anand S, Ortel BJ, Pereira SP, Hasan T, Maytin EV (2012) Cancer Lett 326:8–16

    Article  CAS  Google Scholar 

  3. Dolmans DE, Fukumura D, Jain RK (2003) Nat Rev Cancer 3:380

    Article  CAS  Google Scholar 

  4. Snyder JW, Greco WR, Bellnier DA, Vaughan L, Henderson BW (2003) Cancer Res 63:8126

    CAS  Google Scholar 

  5. Zhang XM, Wu HS, Chen XM (2003) Eur J Inorg Chem 2003:2959

    Article  Google Scholar 

  6. Nishiyama N, Stapert HR, Zhang GD et al (2003) Bioconjug Chem 14:58

    Article  CAS  Google Scholar 

  7. Dai X-H, Zhang H-D, Dong C-M (2009) Polymer 50:4626

    Article  CAS  Google Scholar 

  8. Peng C-L, Shieh M-J, Tsai M-H, Chang C-C, Lai P-S (2008) Biomaterials 29:3599

    Article  CAS  Google Scholar 

  9. Dai XH, Dong CM (2008) J Polym Sci A Polym Chem 46:817

    Article  CAS  Google Scholar 

  10. Murariu M, Ferreira AD, Alexandre M, Dubois P (2008) Polym Adv Technol 19:636. doi:10.1002/pat.1131

    Article  CAS  Google Scholar 

  11. Hu Y, Hu Y, Topolkaraev V, Hiltner A, Baer E (2003) Polymer 44:5711

    Article  CAS  Google Scholar 

  12. Jiang L, Wolcott MP, Zhang J (2006) Biomacromolecules 7:199

    Article  Google Scholar 

  13. Cohn D, Hotovely-Salomon A (2005) Polymer 46:2068

    Article  CAS  Google Scholar 

  14. Maglio G, Migliozzi A, Palumbo R (2003) Polymer 44:369

    Article  CAS  Google Scholar 

  15. Riley T, Stolnik S, Heald C et al (2001) Langmuir 17:3168

    Article  CAS  Google Scholar 

  16. Hecht S, Vladimirov N, Frechet JM (2001) J Am Chem Soc 123:18

    Article  CAS  Google Scholar 

  17. Hsu C-Y, Nieh M-P, Lai P-S (2012) Chem Commun 48:9343

    Article  CAS  Google Scholar 

  18. Dai XH, Liu W, Huang YF, Dong CM (2011) Adv Mater Res 239:1703

    Article  Google Scholar 

  19. Dai X-H, Dong C-M, Fa H-B, Yan D, Wei Y (2006) Biomacromolecules 7:3527

    Article  CAS  Google Scholar 

  20. Spain SG, Gibson MI, Cameron NR (2007) J Polym Sci A Polym Chem 45:2059

    Article  CAS  Google Scholar 

  21. Kiessling LL, Gestwicki JE, Strong LE (2006) Angew Chem Int Ed 45:2348

    Article  CAS  Google Scholar 

  22. Bertozzi CR, Kiessling LL (2001) Science 291:2357

    Article  CAS  Google Scholar 

  23. Ladmiral V, Melia E, Haddleton DM (2004) Eur Polym J 40:431

    Article  CAS  Google Scholar 

  24. Miura Y (2012) Polym J 44:679. doi:10.1038/pj.2012.4

    Article  CAS  Google Scholar 

  25. Thoma G, Patton JT, Magnani JL, Ernst B, Öhrlein R, Duthaler RO (1999) J Am Chem Soc 121:5919

    Article  CAS  Google Scholar 

  26. Okada M (2002) Prog Polym Sci 27:87

    Article  CAS  Google Scholar 

  27. Wang Q, Dordick JS, Linhardt RJ (2002) Chem Mater 14:3232

    Article  CAS  Google Scholar 

  28. Ballut S, Makky A, Loock B, Michel JP, Maillard P, Rosilio V (2009) Chem Commun 2:224

  29. Laville I, Pigaglio S, Blais JC et al (2006) J Med Chem 49:2558

    Article  CAS  Google Scholar 

  30. Maillard P, Loock B, Grierson D et al (2007) Photodiagn Photodyn Ther 4:261

    Article  CAS  Google Scholar 

  31. Zhu G, Mallery SR, Schwendeman SP (2000) Nat Biotechnol 18:52

    Article  CAS  Google Scholar 

  32. Li K, Liu B (2010) Polym Chem 1:252

    Article  CAS  Google Scholar 

  33. Nederberg F, Connor EF, Möller M, Glauser T, Hedrick JL (2001) Angew Chem Int Ed 40:2712

    Article  CAS  Google Scholar 

  34. Myers M, Connor EF, Glauser T, Möck A, Nyce G, Hedrick JL (2002) J Polym Sci A Polym Chem 40:844

    Article  CAS  Google Scholar 

  35. Discher DE, Ahmed F (2006) Annu Rev Biomed Eng 8:323

    Article  CAS  Google Scholar 

  36. Ren T, Wang A, Yuan W, Li L, Feng Y (2011) J Polym Sci A Polym Chem 49:2303

    Article  CAS  Google Scholar 

  37. Li ZY, Wang HY, Li C et al (2011) J Polym Sci A Polym Chem 49:286

    Article  CAS  Google Scholar 

  38. Quimby DJ, Longo FR (1975) J Am Chem Soc 97:5111

    Article  CAS  Google Scholar 

  39. Ye S, Czuba M, Romiszewska A, Karolczak J, Graczyk A (2002) Opt Appl 33:489

    Google Scholar 

  40. Spiller W, Kliesch H, Woehrle D, Hackbarth S, Roeder B, Schnurpfeil G (1998) J Porphyrins Phthalocyanines 2:145

    Article  CAS  Google Scholar 

  41. Tada DB, Vono LL, Duarte EL et al (2007) Langmuir 23:8194

    Article  CAS  Google Scholar 

  42. Gerhardt SA, Lewis JW, Zhang JZ, Bonnett R, McManus KA (2003) Photochem Photobiol Sci 2:934

    Article  CAS  Google Scholar 

  43. Park SY, Han BR, Na KM, Han DK, Kim SC (2003) Macromolecules 36:411cbrs5

    Article  Google Scholar 

  44. Madbouly SA, Xia Y, Kessler MR (2012) Macromolecules 45:7729. doi:10.1021/ma301458n

    Article  CAS  Google Scholar 

  45. Grubbs RB (2011) Polym Rev 51:104. doi:10.1080/15583724.2011.566405

    Article  CAS  Google Scholar 

  46. Siegwart DJ, Oh JK, Matyjaszewski K (2012) Prog Polym Sci 37:18. doi:10.1016/j.progpolymsci.2011.08.001

    Article  CAS  Google Scholar 

  47. Gregory A, Stenzel MH (2012) Prog Polym Sci 37:38. doi:10.1016/j.progpolymsci.2011.08.004

    Article  CAS  Google Scholar 

  48. Albertin L, Stenzel MH, Barner-Kowollik C, Foster LJR, Davis TP (2005) Macromolecules 38:9075

    Article  CAS  Google Scholar 

  49. Bernard J, Favier A, Zhang L et al (2005) Macromolecules 38:5475

    Article  CAS  Google Scholar 

  50. Dong CM, Guo YZ, Qiu KY, Gu ZW, Feng XD (2005) J Control Release 107:53

    Article  CAS  Google Scholar 

  51. Ideta R, Tasaka F, Jang WD et al (2005) Nano Lett 5:2426

    Article  CAS  Google Scholar 

  52. Feng H, Dong CM (2006) Biomacromolecules 7:3069. doi:10.1021/bm060568l

    Article  CAS  Google Scholar 

  53. Haag R (2004) Angew Chem-Int Edit 43:278. doi:10.1002/anie.200301694

    Article  CAS  Google Scholar 

  54. Moan J (1984) Photochem Photobiol 39:445

    Article  CAS  Google Scholar 

  55. Choi K-H, Wang K-K, Shin EP et al (2011) J Phys Chem C 115:3212

    Article  CAS  Google Scholar 

  56. Ringot C, Sol V, Barrière M et al (2011) Biomacromolecules 12:1716

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are greatly grateful for the financial support of the National Natural Science Foundation of China (21004031), the Natural Science Foundation of Jiangsu Province (BK2011459), the National Postdoctoral Foundation of China (20090461065), the National Postdoctoral Foundation of Jiangsu Province (1001034B), Open Foundation of Stake Key Laboratory of Natural and Biomimetic Drugs, Peking University (K20110105), and the social development Foundation of Zhen jiang (SH2012024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Hui Dai.

Additional information

Mr Pan has done a prominent work in the study of singlet oxygen research and Fluorescence quantum yield.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 93 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, XH., Wang, ZM., Liu, W. et al. Biomimetic star-shaped porphyrin-cored poly(l-lactide)-b-glycopolymer block copolymers for targeted photodynamic therapy. Colloid Polym Sci 292, 2111–2122 (2014). https://doi.org/10.1007/s00396-014-3244-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3244-6

Keywords

Navigation