Skip to main content
Log in

Bio-recognizable and photo-cleavable block copolymers based on sugar and poly(4-substituted-ε-caprolactone) bearing a photo-cleavable junction

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this study, we synthesized bio-recognizable and photo-cleavable amphiphilic block copolymers containing photodegradable linkers, 5-hydroxy-2-nitrobenzyl alcohol, as junction points between bio-recognizable hydrophilic glucose (or maltose) and hydrophobic poly(4-substituted-ε-caprolactone) chains, by using a combination of ring-opening polymerization and nucleophilic substitution reactions. When the polymer solutions were exposed to ultraviolet (UV) irradiation, substantial structural and morphological changes were observed in the particles. The copolymers were biodegradable and biocompatible, and they could self-assemble into spherical photo-responsive micelles. Fluorescence emission measurements indicated the release of Nile red, a hydrophobic dye, encapsulated by the Glyco-ONB-PXCL micelles, in response to irradiation caused by the disruption of the micelles. Selective lectin binding experiments confirmed that the glycosylated Glyco-ONB-PXCL could be used to bio-recognition applications. The nanoparticles were associated with negligible levels of toxicity at concentrations of less than 30 μg mL−1. The confocal microscopy and flow cytometry results showed that the uptake of doxorubicin (DOX)-loaded micelles by HeLa cells was faster than that of free DOX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Petros RA, DeSimone JM (2010) Nat Rev Drug Discov 9:615–627

    Article  CAS  Google Scholar 

  2. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nat Nanotechnol 2:751–760

    Article  CAS  Google Scholar 

  3. Schatz C, Lecommandoux S (2010) Macromol Rapid Commun 31:1664–1684

    Article  CAS  Google Scholar 

  4. Sunasee R, Narain R (2013) Macromol Biosci 13:9–27

    Article  CAS  Google Scholar 

  5. Xing T, Yang X, Fu L, Yan L (2013) Polym Chem 4:4442–4449

    Article  CAS  Google Scholar 

  6. Peça IN, Petrova KT, Cardoso MM, Barros MT (2012) React Funct Polym 72:729–735

    Article  Google Scholar 

  7. Lee RS, Peng KY (2012) React Funct Polym 72:564–573

    Article  CAS  Google Scholar 

  8. Isono T, Otsuka I, Kondo Y, Halila S, Fort S, Rochas C et al (2013) Macromolecules 46:1461–1469

    Article  CAS  Google Scholar 

  9. Yan Q, Han D, Zhao Y (2013) Polym Chem 4:5026–5037

    Article  CAS  Google Scholar 

  10. Tardy BL, Dam HH, Kamphuis MMJ, Richardson JJ, Caruso F (2014) Biomacromolecules 15:53–59

    Article  CAS  Google Scholar 

  11. Bertrand O, Poggi E, Gohy JF, Fustin CA (2014) Macromolecules 47:183–190

    Article  CAS  Google Scholar 

  12. Wang B, Chen K, Yang R, Yang F, Liu J (2014) Carbohydr Polym 103:510–519

    Article  CAS  Google Scholar 

  13. Liu G, Dong CM (2012) Biomacromolecules 13:1573–1583

    Article  CAS  Google Scholar 

  14. Peng KY, Wang SW, Hua MY, Lee RS (2013) RSC Adv 3:18453–18463

    Article  CAS  Google Scholar 

  15. Zhao H, Gu W, Thielke MW, Sterner E, Tsai T, Russell TP (2013) Macromolecules 46:5195–5201

    Article  CAS  Google Scholar 

  16. Lee RS, Wang SW, Li YC, Fang JY (2015) RSC Adv 5:497–512

    Article  CAS  Google Scholar 

  17. Wu WC, Kuo YS, Cheng CH (2015) J Polym Res 22:80–89

    Article  Google Scholar 

  18. Cai H, Jiang G, Shen Z, Fan X (2012) Macromolecules 45:6176–6184

    Article  CAS  Google Scholar 

  19. Kang M, Moon R (2009) Macromolecules 42:455–458

    Article  CAS  Google Scholar 

  20. Peng KY, Wang SW, Lee RS (2013) J Polym Sci A Polym Chem 51:2769–2781

    Article  CAS  Google Scholar 

  21. Kuang H, Wu S, Xie Z, Meng F, Jing X, Huang Y (2012) Biomacromolecules 13:3004–3012

    Article  CAS  Google Scholar 

  22. Provencher SW, Hendrix J (1978) J Phys Chem 69:4237–4276

    Article  Google Scholar 

  23. Griffin DR, Schlosser JL, Lam SF, Nguyen TH, Maynard HD, Kasko AM (2013) Biomacromolecules 14:1199–2017

    Article  CAS  Google Scholar 

  24. Hu X, Tian J, Liu T, Zhang G, Liu S (2013) Macromolecules 46:6243–6256

    Article  CAS  Google Scholar 

  25. Yang C, Ebrahim Attia AB, Tan JPK, Ke X, Gao S, Hedrick JL (2012) Biomaterials 33:2971–2979

    Article  CAS  Google Scholar 

  26. Lv C, Wang Z, Wang P, Tang X (2012) Langmuir 28:9387–9394

    Article  CAS  Google Scholar 

  27. Lee RS, Li YC, Wang SW (2015) Carbohydr Polym 117:201–210

    Article  CAS  Google Scholar 

  28. Li B, Wang Q, Wang X, Wang C, Jiang X (2013) Carbohydr Polym 93:430–437

    Article  CAS  Google Scholar 

  29. Han D, Tong X, Zhao Y (2011) Macromolecules 44:437–439

    Article  CAS  Google Scholar 

  30. Zhao H, Sterner ES, Coughlin EB, Theato P (2012) Macromolecules 45:1723–1736

    Article  CAS  Google Scholar 

  31. Ambrosi M, Cameron NR, Davis BG (2005) Org Biomol Chem 3:1593–1608

    Article  CAS  Google Scholar 

  32. Huang J, Habraken G, Audouin F, Heise A (2010) Macromolecules 43:6050–6057

    Article  CAS  Google Scholar 

  33. Simon Ting SR, Min EH, Escalé P, Save M, Billon L, Stenzel MH (2009) Macromolecules 42:9422–9434

    Article  Google Scholar 

  34. Oeriemans C, Bult W, Bos M, Storm G, Nijsen JF, Hennink WE (2010) Pharm Res 27:2569–2589

    Article  Google Scholar 

  35. Dai X, Yue Z, Eccleston ME, Swartling J, Slater NK, Kaminski CF (2008) Nanomedicine 4:49–56

    Article  CAS  Google Scholar 

  36. Liu P, Shi B, Yue C, Gao G, Li P, Yi H (2013) Polym Chem 4:5793–5799

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by grants from Ministry of Science and Technology (MOST 103-2221-E-182-071) and Chang Gung Memorial Hospital (CMRPD5D0011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ren-Shen Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, JY., Wang, SW., Li, YC. et al. Bio-recognizable and photo-cleavable block copolymers based on sugar and poly(4-substituted-ε-caprolactone) bearing a photo-cleavable junction. J Polym Res 22, 155 (2015). https://doi.org/10.1007/s10965-015-0803-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-015-0803-6

Keywords

Navigation