Skip to main content
Log in

Electromagnetic properties and microwave absorption enhancement of Ba0.85RE0.15Co2Fe16O27-polyaniline composites: RE = Gd, Tb, Ho

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The Gd-, Tb-, and Ho-doped W-type hexagonal ferrite Ba0.85RE0.15Co2Fe16O27 was fabricated by a facile route of low-temperature sol–gel self-propagating combustion. Furthermore, a combination of dielectric loss phase polyaniline and magnetic loss phase Ba0.85RE0.15Co2Fe16O27 as the microwave absorber in a core-shell architecture has been synthesized. The effect of different lanthanide ions Gd, Tb, and Ho on their microstructure, static magnetic properties, electromagnetic properties, and microwave reflection loss have been systematically studied. Our results show that the Ho-doped ferrite has the low microstructure parameters (a, c, and V) and high saturation magnetization (Ms) attributed to its ionic radius and magnetic moment. Moreover, it was found that the Ho-doped composite exhibited excellent microwave absorbing property with a minimum reflection loss (RL) of about −15.1 dB at 9.4 GHz. The reflection loss of composite increases up to almost triple upon the combination of polyaniline and doped ferrite. Such lightweight and highly effective absorbers via combining the organic and inorganic phase into a core-shell architecture are highly desirable for microwave absorber in various applications.

The synthesis and properties of the PANI/REBF composites

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lim KM, Kim MC, Lee KA, Park CG (2003) IEEE Trans Magn 39:1836–1841

    Article  CAS  Google Scholar 

  2. Zhou JH, He JP, Li GX, Wang T, Sun D, Ding XC, Zhao JQ, Wu SC (2010) J Phys Chem C 114:7611–7617

    Article  CAS  Google Scholar 

  3. Zhang XF, Huang H, Dong XL (2013) J Phys Chem C 117:8563–8569

    Article  CAS  Google Scholar 

  4. Ahmad M, Ali I, Grösinger R, Kriegisch M, Kubel F, Rana MU (2013) J Alloys Compd 579:57–64

    Article  CAS  Google Scholar 

  5. Ghasemi A, Morisako A (2008) J Magn Magn Mater 320:1167–1172

    Article  CAS  Google Scholar 

  6. Basavaraja C, Kim WJ, Kim DG, Huh DS (2012) Colloid Polym Sci 290:829–838

    Article  CAS  Google Scholar 

  7. Donescu D, Somoghi R, Spataru CI, Maximean DM, Panaitescu DM, Vasile E, Nistor CL (2013) Colloid Polym Sci 291:2345–2358

    Article  CAS  Google Scholar 

  8. Fang FF, Liu YD, Choi HJ (2013) Colloid Polym Sci 291:1781–1786

    Article  CAS  Google Scholar 

  9. Xu HF, Zhang HJ, Lv T, Wei HW, Song F (2013) Colloid Polym Sci 291:1713–1720

    Article  CAS  Google Scholar 

  10. Che RC, Zhi CY, Liang CY, Zhou XG (2006) Appl Phys Lett 88:033105

    Article  Google Scholar 

  11. Hosseini SH, Mohseni SH, Asadnia A, Kerdari H (2011) J Alloys Compd 509:4682–4687

    Article  CAS  Google Scholar 

  12. Guo FY, Ji GJ, Xu JJ, Zou HF, Gan SC, Xu XC (2012) J Magn Magn Mater 324:1209–1213

    Article  CAS  Google Scholar 

  13. Oyharçabal M, Olinga T, Foulc MP, Lacomme S, Gontier E, Vigneras V (2013) Compos Sci Technol 74:107–112

    Article  Google Scholar 

  14. Naito Y, Suetake K (1971) IEEE Trans Microwave Theory Tech 19:65–72

    Article  Google Scholar 

  15. Basavaraja C, Won JK, Dae GK, Do SH (2012) Colloid Polym Sci 290:829–838

    Article  CAS  Google Scholar 

  16. Jiang J, Li LC, Xu F (2007) J Appl Polym Sci 105:944–950

    Article  CAS  Google Scholar 

  17. Dar MA, Kotnala RK, Verma V, Shah J, Siddiqui WA, Alam M (2012) J Phys Chem C 116:5277–5287

    Article  CAS  Google Scholar 

  18. Ohlan A, Singh K, Chandra A, Dhawan SK (2012) Appl Mater Inter 2:927–933

    Article  Google Scholar 

  19. Xuan SH, Wang YXJ, Leung KCF, Shu KY (2008) J Phys Chem C 112:18804–18809

    Article  CAS  Google Scholar 

  20. Ćiric-Marjanović G, Dragičević L, Milojević M, Mojović M et al (2009) J Phys Chem B 113:7116–7127

    Article  Google Scholar 

  21. Huang J, Li Q, Li D, Wang Y, Dong LJ, Xie HA, Wang J, Xiong CX (2013) Langmuir 29:10223–10228

    Article  CAS  Google Scholar 

  22. Zhou WC, Hu XJ, Bai XX, Zhou SY, Sun CH, Yan J, Chen P (2013) ACS Appl Mater Interfaces 3:3839–3845

    Article  Google Scholar 

  23. Nishikawa M, Mitani Y, Nosaka Y (2012) J Phys Chem C 116:14900–14907

    Article  CAS  Google Scholar 

  24. Shannon RD (1976) Acta Crystallogr A32:751–767

    Article  CAS  Google Scholar 

  25. Xu JJ, Ji GJ, Zou HF, Zhou Y, Gan SC (2011) J Alloys Compd 509:4290–4294

    Article  CAS  Google Scholar 

  26. Iqbal MJ, Khan RA (2009) J Alloys Compd 478:847–852

    Article  CAS  Google Scholar 

  27. Ahmeda MA, Okashab N, Kershic RM (2008) J Magn Magn Mater 320:1146–1150

    Article  Google Scholar 

  28. Horvath MP (2000) J Magn Magn Mater 215:171–183

    Article  Google Scholar 

  29. Ardelean I, Griguta L (2007) J Non-Cryst Solids 353:2363–2366

    Article  CAS  Google Scholar 

  30. Cho BK, Canfield PC, Johnston DC (1996) Phys Rev B: Condens Matter 53:8499–8505

    Article  CAS  Google Scholar 

  31. Wawrzyńska E, Penc B, Hernandez-Velasco J, Szytuła A, Zygmunt A (2003) J Alloys Compd 350:68–71

    Article  Google Scholar 

  32. Bai Y, Zhou J, Gui ZL, Yue ZX, Li LT (2003) J Magn Magn Mater 264:44–49

    Article  CAS  Google Scholar 

  33. Xu P, Han XJ, Jiang JJ, Wang XH, Li XD, Wen AH (2007) J Phys Chem C 111:12603–12608

    Article  CAS  Google Scholar 

  34. Song Q, Zhang ZJ (2004) J Am Chem Soc 126:6164–6168

    Article  CAS  Google Scholar 

  35. Cao J, Fu WY, Yang HB, Yu QJ, Zhang YY, Liu SK, Sun P, Zhou XM et al (2009) J Phys Chem B 113:4642–4647

    Article  CAS  Google Scholar 

  36. Li LC, Chen X, Liang XX, Hao B (2010) Synth Met 160:28–34

    Article  CAS  Google Scholar 

  37. Du L, Du YC, Li Y, Wang JY, Wang C, Wang XH, Xu P, Han XJ (2010) J Phys Chem C 114:19600–19606

    Article  CAS  Google Scholar 

  38. Li S, Gan MY, Ma L, Yan J, Tang JH, Fu DD, Li ZT, Bai YQ (2013) High Perform Polym. doi:10.1177/0954008313487393

    Google Scholar 

  39. Wen H, Cao MH, Sun GB, Xu WG, Wang D, Zhang XQ, Hu CW (2008) J Phys Chem C 112:15948–15955

    Article  CAS  Google Scholar 

  40. Ma Z, Wang JB, Liu QF, Yuan J (2009) Appl Surf Sci 255:6629–6633

    Article  CAS  Google Scholar 

  41. Bhattacharya P, Das CK (2013) Ind Eng Chem Res 52:9594–9606

    Article  CAS  Google Scholar 

  42. Wang GZ, Gao Z, Tang SW, Chen CQ, Duan FF, Zhao SC, Lin SW, Feng YH, Zhou L, Qin Y (2012) ACS NANO 6:11009–11017

    CAS  Google Scholar 

  43. Chen YJ, Xiao G, Wang TS, Ouyang QY, Qi LH, Ma Y, Gao P, Zhu CL, Cao MS, Jin HB (2011) J Phys Chem C 115:13603–13608

    Article  CAS  Google Scholar 

  44. Singh AP, Kumar SA, Chandra A, Dhawan SK (2011) AIP Advances 1:022147-1–022147-11

    Google Scholar 

  45. Wang ZJ, Wu LN, Zhou JG, Cai W, Shen BZ, Jiang ZH (2013) J Phys Chem C 117:5446–5452

    Article  CAS  Google Scholar 

  46. Zhang ZY, Liu XX, Wang XJ, Wu YP, Liu Y (2012) J Magn Magnetic Mater 324:2177–2182

    Article  CAS  Google Scholar 

  47. Xu P, Han XJ, Wang C, Zhou DH, Lv ZS, Wen AH, Wang XH, Zhang B (2008) J Phys Chem B 112:10443–10448

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This present work was financially supported by the key technology and equipment of efficient utilization of oil shale resources, No: OSR-5, and the National Science and Technology Major Projects, No: 2008ZX05018-005.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lianchun Zou or Shucai Gan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, F., Li, R., Xu, J. et al. Electromagnetic properties and microwave absorption enhancement of Ba0.85RE0.15Co2Fe16O27-polyaniline composites: RE = Gd, Tb, Ho. Colloid Polym Sci 292, 2173–2183 (2014). https://doi.org/10.1007/s00396-014-3234-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3234-8

Keywords

Navigation