Skip to main content
Log in

Temperature-induced phase transition in hydrogels of interpenetrating networks poly(N-isopropylmethacrylamide)/poly(N-isopropylacrylamide)

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The combination of 1H NMR spectroscopy, DSC, dynamic mechanical spectroscopy, and optical microscopy was used to investigate temperature-induced volume phase transition in hydrogels of interpenetrating networks (IPNs) poly(N-isopropylmethacrylamide)/poly(N-isopropylacrylamide) (PNIPMAm/PNIPAm) with various PNIPMAm content. In these IPNs, both networks are thermosensitive; such systems were not examined so far. All methods showed phase transition starting at 307 K, which is the volume phase transition temperature of PNIPAm, the major network component. Only the sample with the lowest content of PNIPAm (~54 %) shows two-step collapse transition, other samples with higher PNIPAm content show a single transition in NMR and DSC which indicates enhanced mutual entanglement of both components. In all samples, the phase transition results in substantial increase of both components of the shear modulus. Although the properties of all samples change with temperature in similar way, differences in dependence on the PNIPMAm content and the shape of the sample can be seen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aseyev VO, Tenhu H, Winnik FM (2006) Adv Polym Sci 196:1–85

    Article  CAS  Google Scholar 

  2. Schild HG (1992) Prog Polym Sci 17:163–249

    Article  CAS  Google Scholar 

  3. Fujishige S, Kubota K, Ando I (1989) J Phys Chem 93:3311–3313

    Article  CAS  Google Scholar 

  4. Dušek K (ed) (1993) Advances in Polymer Science, Vols. 109 and 110

  5. Tanaka T (1978) Phys Rev Lett 40:820–823

    Article  CAS  Google Scholar 

  6. Uhrich KE (1999) Chem Rev 99:3181–3198

    Article  CAS  Google Scholar 

  7. Park C, Orozco-Avila I (1992) Biotechnol Prog 8:521–526

    Article  CAS  Google Scholar 

  8. Kajiwara K, Ross-Murphy SB (1992) Nature 355:208–209

    Article  Google Scholar 

  9. Beebe DJ, Moore JS, Bauer JM, Yu Q, Liu RH, Devadoss C, Jo BH (2000) Nature 404:588–590

    Article  CAS  Google Scholar 

  10. von Recum HA, Kikuchi A, Yamato M, Sakurai Y, Okano T, Kim S (1999) Tissue Eng 5:251–265

    Article  Google Scholar 

  11. Ramkissoon-Ganorkar C, Liu F, Baudys M, Kim SW (1999) J Controlled Rel 59:287–298

    Article  CAS  Google Scholar 

  12. Miyata T, Asami N, Uragami T (1999) Nature 399:766–769

    Article  CAS  Google Scholar 

  13. Hirotsu S (1988) J Phys Chem 88:427–431

    Article  CAS  Google Scholar 

  14. Gutowska A, Bae YH, Jacobs H, Feijen J, Kim SW (1994) Macromolecules 27:4167–4175

    Article  CAS  Google Scholar 

  15. Hirotsu S (1991) J Phys Chem 94:3949–3957

    Article  CAS  Google Scholar 

  16. Muniz E, Geuskens G (2001) Macromolecules 34:4480–4484

    Article  CAS  Google Scholar 

  17. Tiktopulo EI, Uversky VN, Lushchik VB, Klenin SI, Bychkova VE, Ptitsyn OB (1995) Macromolecules 28:7519–7524

    Article  CAS  Google Scholar 

  18. Djokpé E, Wogt W (2001) Macromol Chem Phys 202:750–757

    Article  Google Scholar 

  19. Wu Y, Meersman F, Ozaki Y (2006) Macromolecules 39:1182–1188

    Article  CAS  Google Scholar 

  20. Schmidt P, Dybal J, Trchová M (2006) Vib Spectrosc 42:278–283

    Article  CAS  Google Scholar 

  21. Salmerón SM, Hanyková L, Ilavský M, Monleón PM (2004) Polymer 45:4087–4094

    Article  Google Scholar 

  22. Starovoytova L, Spěváček J, Hanyková L, Ilavský M (2003) Macromol Symp 203:239–246

    Article  CAS  Google Scholar 

  23. Spěváček J (2009) Curr Opin Colloid Interface Sci 14:184–191

    Article  Google Scholar 

  24. Starovoytova L, Spěváček J, Hanyková L, Ilavský M (2004) Polymer 45:5905–5911

    Article  CAS  Google Scholar 

  25. Starovoytova L, Spěváček J, Ilavský M (2005) Polymer 46:677–683

    Article  CAS  Google Scholar 

  26. Starovoytova L, Spěváček J (2006) Polymer 47:7329–7334

    Article  CAS  Google Scholar 

  27. Starovoytova L, Spěváček J, Trchová M (2007) Eur Polym J 43:5001–5009

    Article  CAS  Google Scholar 

  28. Spěváček J, Starovoytova L, Hanyková L, Kouřilová H (2008) Macromol Symp 273:17–24

    Article  Google Scholar 

  29. Kouřilová H, Hanyková L, Spěváček J (2009) Eur Polym J 45:2935–2941

    Article  Google Scholar 

  30. Spěváček J, Hanyková L, Starovoytova L (2004) Macromolecules 37:7710–7718

    Article  Google Scholar 

  31. Isik B, Gunay Y (2004) J Appl Polym Sci 94:1619–1624

    Article  CAS  Google Scholar 

  32. Matzelle TR, Geuskens G, Kruse N (2003) Macromolecules 36:2926–2931

    Article  CAS  Google Scholar 

  33. Ambrosio L, de Santis R, Nicolais L (1998) Proc Inst Mech Eng Part H 212:93–99

    Article  CAS  Google Scholar 

  34. Fei R, George JT, Park J, Grunlan MA (2012) Soft Matter 8:481–487

    Article  CAS  Google Scholar 

  35. Gong JP (2010) Soft Matter 6:2583–2590

    Article  CAS  Google Scholar 

  36. Zhang XZ, Wu DQ, Chu CC (2004) Biomaterials 25:3793–3805

    Article  CAS  Google Scholar 

  37. Zhang J, Peppas NA (2000) Macromolecules 33:102–107

    Article  CAS  Google Scholar 

  38. Lim ZH, Kim D, Lee DS (1997) J Appl Pol Sci 64:2647–2655

    Article  CAS  Google Scholar 

  39. Szilágyi A, Zrínyi M (2005) Polymer 46:10011–10016

    Article  Google Scholar 

  40. Zrínyi M, Szilágyi A, Filipcsei G, Fehér J, Szalma J, Móczár G (2001) Polym Adv Technol 12:501–505

    Article  Google Scholar 

  41. Spěváček J (2011) Macromol Symp 305:18–25

    Article  Google Scholar 

  42. Kouřilová H, Šťastná J, Hanyková L, Sedláková Z, Spěváček J (2010) Eur Polym J 46:1299–1306

    Article  Google Scholar 

  43. Šťastná J, Hanyková L, Spěváček J (2012) Colloid Polym Sci 290:1811–1817

    Article  Google Scholar 

  44. Larsson A, Kuckling D, Schönhoff M (2001) Colloid Surf A Physicochem Eng Asp 190:185–192

    Article  CAS  Google Scholar 

  45. Hofmann C, Schönhoff M (2009) Colloid Polym Sci 287:1369–1376

    Article  CAS  Google Scholar 

  46. Otake K, Inomata H, Konno M, Saito S (1990) Macromolecules 23:283–289

    Article  CAS  Google Scholar 

  47. Shibayama M, Mizutani S, Nomura S (1996) Macromolecules 29:2019–2024

    Article  CAS  Google Scholar 

  48. Richter S (2004) Colloid Polym Sci 282:1213–1221

    Article  CAS  Google Scholar 

  49. Chetty A, Kovács J, Sulyok Z, Mészáros Á, Fekete J, Domján A, Szilágyi A, Vargha V (2013) Express Polym Lett 7:95–105

    Google Scholar 

Download references

Acknowledgments

Support by the Czech Science Foundation (project 202/09/1281) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lenka Hanyková or Jiří Spěváček.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Šťastná, J., Hanyková, L., Sedláková, Z. et al. Temperature-induced phase transition in hydrogels of interpenetrating networks poly(N-isopropylmethacrylamide)/poly(N-isopropylacrylamide). Colloid Polym Sci 291, 2409–2417 (2013). https://doi.org/10.1007/s00396-013-2992-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-013-2992-z

Keywords

Navigation