Skip to main content
Log in

Decondensation of cationic gemini surfactant-induced DNA aggregates using triblock copolymer (PEO)20–(PPO)70–(PEO)20

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Decondensation of DNA molecules, previously compacted by cationic gemini surfactant 12-3-12 · 2Br, has been successfully achieved by introducing triblock copolymer (PEO)20–(PPO)70–(PEO)20 (P123). P123 can interact with 12-3-12 · 2Br to form supramolecular assemblies through hydrophobic interactions, while not interacting with DNA. When introducing 12-3-12 · 2Br into P123/DNA system, the presence of P123 will inhibit the formation of DNA/12-3-12 · 2Br complexes due to the stronger interaction between P123 and 12-3-12 · 2Br. For previously formed DNA/12-3-12 · 2Br complexes, the addition of P123 can lead to the release of DNA from the complex, which should be attributed to the complexation of P123 with free 12-3-12 · 2Br surfactants in bulk phase followed by the breakup of the thermodynamic equilibrium between surfactant aggregates associated with DNA and free surfactants in bulk phase. CD experiments reveal that 12-3-12 · 2Br can change the conformation of DNA from typical B-form to ψ-phase by formation of DNA/12-3-12 · 2Br complexes. However, the release of the surfactant from the complex induced by P123 turns DNA conformation from ψ-phase back to B-form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sarraguça JMG, Dias RS, Pias AACC (2006) Coil-globule coexistence and compaction of DNA chains. J Biol Phys 32:421–434

    Article  Google Scholar 

  2. Miguel MG, Pais AACC, Dias RS, Leal C, Rosa M, Lindman B (2003) DNA-cationic amphiphile interactions. Colloids Surf A Physicochem Eng Asp 228:43–55

    Article  CAS  Google Scholar 

  3. Estévez-Torres A, Baigl D (2011) DNA compaction: fundamentals and applications. Soft Matter 7:6746–6756

    Article  Google Scholar 

  4. Lungwitz U, Breunig M, Blunk T, Göpferich A (2005) Polyethylenimine-based non-viral gene delivery systems. Eur J Pharm Biopharm 60:247–266

    Article  CAS  Google Scholar 

  5. Hackl EV, Kornilova SV, Blagoi YP (2005) DNA structural transitions induced by divalent metal ions in divalent metal ions in aqueous solutions. Int J Biol Macromol 35:175–191

    Article  CAS  Google Scholar 

  6. Sarraguça JMG, Pais AACC (2006) Polyelectrolytes in solutions with multivalent salt. Effects of flexibility and contour length. Phys Chem Chem Phys 8:4233–4241

    Article  Google Scholar 

  7. Grueso E, Cerrillos C, Hidalgo J, Lopez-Cornejo P (2012) Compaction and decompaction of DNA induced by the cationic surfactant CTAB. Langmuir 28:10968–10979

    Article  CAS  Google Scholar 

  8. He Y, Shang Y, Shao S, Liu H, Hu Y (2011) Micellization of cationic gemini surfactant and its interaction with DNA in dilute brine. J Colloid Interface Sci 358:513–520

    Article  CAS  Google Scholar 

  9. McLoughlin D, Langevin D (2004) Surface complexation of DNA with a cationic surfactant. Colloids Surf A Physicochem Eng Asp 250:79–87

    Article  CAS  Google Scholar 

  10. Zana R (2002) Dimeric and oligomeric surfactants. Behavior at interfaces and in aqueous solution: a review. Adv Colloid Interf Sci 97:205–253

    Article  CAS  Google Scholar 

  11. Karlsson L, van Eijk MCP, Söderman O (2002) Compaction of DNA by gemini surfactants: effects of surfactant architecture. J Colloid Interface Sci 252:290–296

    Article  CAS  Google Scholar 

  12. Bhadani A, Singh S (2009) Novel gemini pyridinium surfactants: synthesis and study of their surface activity, DNA binding, and cytotoxicity. Langmuir 25:11703–11712

    Article  CAS  Google Scholar 

  13. Wettig SD, Badea I, Donkuru M, Verrall RE, Foldvari M (2007) Structural and transfection properties of amine-substituted gemini surfactant-based nanoparticles. J Gene Med 9:649–658

    Article  CAS  Google Scholar 

  14. Zana R (2002) Dimeric (Gemini) surfactants: effect of the spacer group on the association behavior in aqueous solution. J Colloid Interface Sci 248:203–220

    Article  CAS  Google Scholar 

  15. Badea I, Verrall R, Baca-Estrada M, Tikoo S, Rosenberg A, Kumar P, Foldvari M (2005) In vivocutaneous interferon-gamma gene delivery using novel dicationic (gemini) surfactant-plasmid complexes. J Gene Med 7:1200–1214

    Article  CAS  Google Scholar 

  16. Carlstedt J, González-Pérez A, Alatorre-Meda M, Dias RS, Lindman B (2010) Release of DNA from surfactant complexes induced by 2-hydroxypropyl-beta-cyclodextrin. Int J Biol Macromol 46:153–158

    Article  CAS  Google Scholar 

  17. Jorge AF, Dias RS, Pais AACC (2012) Enhanced condensation and facilitated release of DNA using mixed cationic agents: a combined experimental and monte carlo study. Biomacromolecules 13:3151–3161

    Article  CAS  Google Scholar 

  18. Dias RS, Lindman B, Miguel MG (2002) Compaction and decompaction of DNA in the presence of catanionic amphiphile mixtures. J Phys Chem B 106:12608–12612

    Article  CAS  Google Scholar 

  19. González-Pérez A, Dias RS, Nylander T, Lindman B (2008) Cyclodextrin-surfactant complex: a new route in DNA decompaction. Biomacromolecules 9:772–775

    Article  Google Scholar 

  20. Cao M, Deng M, Wang X, Wang Y (2008) Decompaction of cationic gemini surfactant-induced DNA condensates by beta-cyclodextrin or anionic surfactant. J Phys Chem B 112:13648–13654

    Article  CAS  Google Scholar 

  21. Corbyn CP, Fletcher PDI, Gemici R, Dias RS, Miguel MG (2009) Re-dissolution and de-compaction of DNA-cationic surfactant complexes using non-ionic surfactants. Phys Chem Chem Phys 11:11568–11576

    Article  CAS  Google Scholar 

  22. Gebhart CL, Kabanov AV (2001) Evaluation of polyplexes as gene transfer agents. J Control Release 73:401–416

    Article  CAS  Google Scholar 

  23. Hao J, Sha X, Tang Y, Jiang Y, Zhang Z, Zhang W, Li Y, Fang X (2009) Enhanced transfection of polyplexes based on pluronic-polypropylenimine dendrimer for gene transfer. Arch Pharm Res 32:1045–1054

    Article  CAS  Google Scholar 

  24. Singh PK, Kumbhakar M, Pal H, Nath S (2008) Effect of electrostatic interaction on the location of molecular probe in polymer-surfactant supramolecular assembly: a solvent relaxation study. J Phys Chem B 112:7771–7777

    Article  CAS  Google Scholar 

  25. Kumbhakar M (2007) Aggregation of ionic surfactants to block copolymer assemblies: a simple fluorescence spectral study. J Phys Chem B 111:14250–14255

    Article  CAS  Google Scholar 

  26. Jansson J, Schillén K, Nilsson M, Söderman O, Fritz G, Bergmann A, Glatter O (2005) Small-angle X-ray scattering, light scattering, and NMR study of PEO–PPO–PEO triblock copolymer/cationic surfactant complexes in aqueous solution. J Phys Chem B 109:7073–7083

    Article  CAS  Google Scholar 

  27. Zana R, Benrraou M, Rueff R (1991) Alkanediyl-α, ω-bis(dimethylalkylammonium bromide) surfactants. 1. Effect of the spacer chain length on the critical micelle concentration and micelle ionization degree. Langmuir 7:1072–1075

    Article  CAS  Google Scholar 

  28. Izumrudov VA, Zhiryakova MV, Goulko AA (2002) Ethidium bromide as a promising probe for studying DNA interaction with cationic amphiphiles and stability of the resulting complexes. Langmuir 18:10348–10356

    Article  CAS  Google Scholar 

  29. Zhou Y, Li Y (2004) Studies of interaction between poly(allylamine hydrochloride) and double helix DNA by spectral methods. Biophys Chem 107:273–281

    Article  CAS  Google Scholar 

  30. Alexandridis P, Holzwarth JF, Hatton TA (1994) Micellization of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers in aqueous solutions: thermodynamics of copolymer association. Macromolecules 27:2414–2425

    Article  CAS  Google Scholar 

  31. Zhao X, Shang Y, Hu J, Liu H, Hu Y (2008) Biophysical characterization of complexation of DNA with oppositely charged Gemini surfactant 12-3-12. Biophys Chem 138:144–149

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Project No. 21173079), the 111 Project of Ministry of Education of China (No. B08021), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yazhuo Shang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Y., Xu, S., Sun, D. et al. Decondensation of cationic gemini surfactant-induced DNA aggregates using triblock copolymer (PEO)20–(PPO)70–(PEO)20 . Colloid Polym Sci 291, 2139–2146 (2013). https://doi.org/10.1007/s00396-013-2954-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-013-2954-5

Keywords

Navigation