Skip to main content
Log in

A new approach to visualizing the carbon black/natural rubber interaction layer in carbon black-filled natural rubber vulcanizates and to elucidating the dependence of mechanical properties on quantitative parameters

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The viscoelastic behavior of carbon black (CB)-filled natural rubber (NR) vulcanizates is explained for the first time by applying a two-phase mixing law, excluding the CB phase, to the volume fraction of the CB/NR interaction layer (CNIL). For CB loadings of 20 phr or less, the CNIL of local CB aggregates induces the reinforcement effect of a series mechanical model of the mixing law. In contrast, for CB loadings of 30 phr or more, the CNIL that forms the CB network (CBN) generates the reinforcement effect of a parallel mechanical model of the mixing law. Therefore, the model of the mixing law presumably changes from a series mechanical model before CBN formation to a parallel one after the network forms. Additionally, employing this fraction, a transition caused by CBN formation was investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fukahori Y (2008) Chapter 18 Mechanism of the carbon black reinforcement of rubbers. In: Bhomik AK (ed) Current topics in elastomers research. CRC Press, Boca Raton, pp 517–539

    Google Scholar 

  2. Boonstra BB (1967) Mixing of carbon black and polymer: interaction and reinforcement. J Appl Polym Sci 11:389–406. doi:10.1002/app.1967.070110307

    Article  CAS  Google Scholar 

  3. Dannenberg EM (1952) Carbon black dispersion and reinforcement. Rubber Chem Technol 25(4):843–857. doi:10.5254/1.3543445

    Article  Google Scholar 

  4. Gessler AM (1969) Evidence for chemical interaction in carbon and polymer associations: extension of original work on effect of carbon structure. Rubber Chem Technol 42(3):858–873. doi:10.5254/1.3539264

    Article  CAS  Google Scholar 

  5. O’Brien J, Cashell E, Wardel GE, McBrierty VJ (1976) An NMR investigation of the interaction between carbon black and cis-polybutadiene. Macromolecules 9(4):653–660. doi:10.1021/ma60052a025

    Article  Google Scholar 

  6. Furuta M, Hikasa T, Kato E (1986) Changes of spin–spin relaxation time for EPR composites during mixing process. J Appl Polym Sci 31:2325–2330. doi:10.1002/app.1986.070310729

    Article  CAS  Google Scholar 

  7. Yatsuyanagi F, Kaido H, Kida N, Ito M (1997) Effects of chemical structure and molecular weight of rubber on the content and structure of carbon-gel in black filled rubber system. Nippon Gomu Kyokaishi 70(5):274–279. doi:10.2324/gomu.70.274

    Article  CAS  Google Scholar 

  8. Kaufman S, Slichter WP, Davis DD (1971) Nuclear magnetic resonance study of rubber–carbon black interactions. J Polym Sci, Part A-2: Polym Phys 9:829–839. doi:10.1002/pol.1971.160090505

    Article  CAS  Google Scholar 

  9. Dionne PJ, Picu CR, Ozisik R (2006) Adsorption and desorption dynamics of linear polymer chains to spherical nanoparticles: A Monte Carlo investigation. Macromolecules 39(8):3089–3092. doi:10.1021/ma0527754

    Article  CAS  Google Scholar 

  10. Smit PPA (1968) Glass transition in carbon black reinforced rubber. Rubber Chem Technol 41(5):1194–1202. doi:10.5254/1.3539184

    Article  Google Scholar 

  11. Yim A, Chahal RS, St. Pierre LE (1973) The effect of polymer-filler interaction energy on the Tg of filled polymers. J Colloid Interface Sci 43(3):583–590. doi:10.1016/0021-9797(73)90406-2

    Article  CAS  Google Scholar 

  12. Klüppel M (2003) The role of disorder in filler reinforcement of elastomers on various length scales. Adv Polym Sci 164:1–86. doi:10.1007/b11054

    Article  Google Scholar 

  13. Klüppel M., Heinrich G. (2005) Physics and engineering of reinforced elastomers—from molecular mechanisms to industrial applications. Kautschuk Gummi Kunststoffe 58: 217–224. doi: http://www.kgk-rubberpoint.de/article/2b5a414b1b5.html

  14. Robertson CG, Lin CJ, Rackaitis M, Roland CM (2008) Influence of particle size and polymer-filler coupling on viscoelastic glass transition of particle-reinforced polymers. Macromolecules 41(7):2727–2731. doi:10.1021/ma7022364

    Article  CAS  Google Scholar 

  15. Payne AR (1960) A note on the existence of a yield point in the dynamic modulus of loaded vulcanizates. J Appl Polym Sci 3:127. doi:10.1002/app.1960.070030721

    Article  CAS  Google Scholar 

  16. Chazeau L, Brown JD, Yanyo LC, Sternstein SS (2000) Modulus recovery kinetics and other insights into the Payne effect for filled elastomers. Polymer Compos 21:202–222. doi:10.1002/pc.10178

    Article  CAS  Google Scholar 

  17. Drozdov AD, Dorfmann AI (2002) The Payne effect for particle-reinforced elastomers. Polym Eng Sci 42:591–604. doi:10.1002/pen.10974

    Article  CAS  Google Scholar 

  18. Robertson CG, Bogoslovov R, Roland CM (2007) Effect of structural arrest on Poisson’s ratio in nanoreinforced elastomers. Physical Review 75:051403–051409. doi:10.1103/PhysRevE.75.051403

    Article  CAS  Google Scholar 

  19. Robertson CG, Roland CM (2008) Glass transition and interfacial segmental dynamics in polymer–particle composites. Rubber Chem Technol 81(3):506–522. doi:10.5254/1.3548217

    Article  CAS  Google Scholar 

  20. Rendek M, Lion A (2010) Strain-induced transition effects of filler-reinforced elastomers with respect to the Payne-effect: experiments and constitutive modeling. Z Angew Math Mech 90:436–458. doi:10.1002/zamm.200900362

    Article  Google Scholar 

  21. Agnelli S, Ramorino G, Passera S, Karger-Kocsis J, Riccò T (2012) Fracture resistance of rubbers with MWCNT, organoclay, silica and carbon black fillers as assessed by the J-integral: effects of rubber type and filler concentration. eXPRESS Polymer Letters 6:581–587. doi:10.3144/expresspolymlett.2012.61

    Article  CAS  Google Scholar 

  22. Cassagnau P (2003) Payne effect and shear elasticity of silica-filled polymers in concentrated solutions and in molten state. Polymer 44:2455–2462. doi:10.1016/S0032-3861(03)00094-6

    Article  CAS  Google Scholar 

  23. Clément F, Bokobza L, Monnerie L (2005) Investigation of the Payne effect and its temperature dependence on silica-filled polydimethylsiloxane networks. Part I: experimental results. Rubber Chem Technol 78(2):211–231. doi:10.5254/1.3547879

    Article  Google Scholar 

  24. Ramier J, Gauthier C, Chazeau L, Stelandre L, Guy L (2007) Payne effect in silica-filled styrene–butadiene rubber: influence of surface treatment. J Polym Sci, Part B: Polym Phys 45:286–298. doi:10.1002/polb.21033

    Article  CAS  Google Scholar 

  25. Xu X-M, Tao X-L, Zheng Q (2008) Influence of surface-modification for calcium carbonate on the interaction between the fillers and polydimethylsiloxane. Chinese J Polym Sci 26:145–152. doi:10.1142/S0256767908002777

    Article  CAS  Google Scholar 

  26. Litchfield D. W., Baird D. G. (2006) The rheology of high aspect ratio nanoparticle filled liquids. Rheology Reviews: 1–60

  27. Das A, Costa FR, Wagenknecht U, Heinrich G (2008) Nanocomposites based on chloroprene rubber: effect of chemical nature and organic modification of nanoclay on the vulcanizate properties. European Polym 44:3456–3465. doi:10.1016/j.eurpolymj.2008.08.025

    Article  CAS  Google Scholar 

  28. Allaoui A, Evesque P, Bai JB (2008) Effect of aging on the reinforcement efficiency of carbon nanotubes in epoxy matrix. J Matter Sci 43(14):5020–5022. doi:10.1007/s10853-008- 2728–5

    Article  CAS  Google Scholar 

  29. Zhang Q, Tian M, Wu Y, Lin G, Zhang L (2004) Effect of particle size on the properties of Mg(OH)2-filled rubber composites. J Appl Polym Sci 94:2341–2346. doi:10.1002/app.21037

    Article  CAS  Google Scholar 

  30. Marcovich N, Reboredo M, Kenny J, Aranguren M (2004) Rheology of particle suspensions in viscoelastic media. Wood flour-polypropylene melt. Rheol Acta 43:293–303. doi:10.1007/s00397-003-0349-0

    Article  CAS  Google Scholar 

  31. Wang J, Wu W, Wang W, Zhang J (2011) Preparation and characterization of hemp hurd powder filled SBR and EPDM elastomers. J Polym Res 18:1023–1032. doi:10.1007/s10965-010-9503-4

    Article  CAS  Google Scholar 

  32. Ikeda Y, Kato A, Shimanuki J, Kohjiya S (2004) Nano-structural observation of in situ silica in natural rubber matrix by three dimensional transmission electron microscopy. Macromol Rapid Commun 25:1186–1190. doi:10.1002/marc.200400053

    Article  CAS  Google Scholar 

  33. Kohjiya S, Kato A, Shimanuki J, Hasegawa T, Ikeda Y (2005) Three-dimensional nano-structure of in situ silica in natural rubber as revealed by 3D-TEM/electron tomography. Polymer 46:4440–4446. doi:10.1016/j.polymer.2005.02.026

    Article  CAS  Google Scholar 

  34. Kohjiya S, Kato A, Shimanuki J, Hasegawa H, Ikeda Y (2005) Three-dimensional nano-structure of in situ silica in natural rubber as revealed by 3D-TEM/electron tomography. J Mater Sci 40:2553–2555. doi:10.1007/s10853-005-2072-y

    Article  CAS  Google Scholar 

  35. Kohjiya S, Kato A, Suda T, Shimanuki J, Ikeda Y (2006) Visualisation of carbon black networks in rubbery matrix by 3D-TEM image. Polymer 47:3298–3301. doi:10.1016/j.polymer.2006.03.008

    Article  CAS  Google Scholar 

  36. Kato A, Shimanuki J, Kohjiya S, Ikeda Y (2006) Three-dimensional morphology of carbon black in NR vulcanizates as revealed by 3D-TEM and dielectric measurements. Rubber Chem Technol 79(4):653–673. doi:10.5254/1.3547959

    Article  CAS  Google Scholar 

  37. Ikeda Y, Kato A, Shimanuki J, Kohjiya S, Tosaka M, Poompradub S, Toki S, Hsiao BS (2007) Nano-structural elucidation in carbon black loaded NR vulcanizate by 3D-TEM and in situ WAXD measurements. Rubber Chem Technol 80(2):251–264. doi:10.5254/1.3539405

    Article  CAS  Google Scholar 

  38. Kohjiya S, Ikeda Y, Kato A (2008) Chapter 19 Visualization of nano-filler dispersion and morphology in rubbery matrix by 3D-TEM. In: Bhowmick AK (ed) Current topics in elastomers research. CRC Press, Boca Raton

    Google Scholar 

  39. Kohjiya S, Kato A, Ikeda Y (2008) Visualization of nanostructure of soft matter by 3D-TEM: nanoparticles in a natural rubber matrix. Prog Polym Sci 33:979–997. doi:10.1016/j.progpolymsci.2008.06.001

    Article  CAS  Google Scholar 

  40. Kato A, Ikeda Y, Kasahara Y, Shimanuki J, Suda T, Hasegawa T, Sawabe H, Kohjiya S (2008) Optical transparency and silica network structure in cross-linked natural rubber as revealed by spectroscopic and three-dimensional transmission electron microscopy techniques. J Opt Soc Am B 25:1602–1615. doi:10.1364/JOSAB.25.001602

    Article  CAS  Google Scholar 

  41. Kato A, Ikeda Y, Kohjiya S (2012) Chapter 17 Carbon black-filled natural rubber composites: physical chemistry and reinforcing mechanism. In: Thomas S, Joseph K, Malhotra SK, Goda K, Streekala MS (eds) Polymer composites, vol 1, Macro- and microcomposites. Wiley-VCH Verlag & Co. KGaA, Boscher, pp 515–543

    Chapter  Google Scholar 

  42. Nishi T (1974) Effect of solvent and carbon black species on the rubber-carbon black interactions studied by pulsed NMR. J Polym Sci Polym Phys 12:685–693. doi:10.1002/pol.1974.180120405

    Article  CAS  Google Scholar 

  43. Litvinov VM, Orza RA, Klüppel M, van Duin M, Magusin PCMM (2011) Rubber-filler interactions and network structure in relation to stress–strain behavior of vulcanized, carbon black filled EPDM. Macromolecules 44:4887–4900. doi:10.1021/ma2007255

    Article  CAS  Google Scholar 

  44. Nakajima K, Nishi T (2008) Chapter 21 Recent developments in rubber research using atomic force microscopy. In: Bhomik AK (ed) Current topics in elastomers research. CRC Press, Boca Raton, pp 579–604

    Google Scholar 

  45. Coran AY (2003) Chemistry of the vulcanization and protection of elastomers: a review of the achievements. J Appl Polym Sci 87:24–30. doi:10.1002/app.11659

    Article  CAS  Google Scholar 

  46. Kremer JR, Mastronarde DN, McIntosh JR (1996) Computer visualization of three-dimensional image data using IMOD. J Structural Biology 116:71–76. doi:10.1006/jsbi.1996.0013

    Article  CAS  Google Scholar 

  47. Stalling D, Westerhoff M, Hege H-C (2005) Chapter 38 Amira: a highly interactive system for visual data analysis. In: Hansen CD, Johnson CR (eds) The visualization handbook. Academic Press, San Diego, San Francisco, New York, Boston, London, Sydney and Tokyo, pp 749–767

    Chapter  Google Scholar 

  48. The Japanese Society of Microscopy (2004) Feature articles: electron tomography. Microscopy 39:2–33

    Google Scholar 

  49. Tsuji M, Fujita M, Kohjiya S (1997) On the correlation between modulus of polymer crystals and resistance against electron-beam irradiation. Nihon Reorogi Gakkaishi 25:193–194

    Google Scholar 

  50. Yurekli K, Krishnamooti R, Tse MF, McElrath KO, Tsou AH, Wang HC (2001) Structure and dynamics of carbon black-filled elastomers. J Polym Sci Part B: Polym Phys 39:256–275. doi:10.1002/1099-0488(20010115)39:2<256::AID-POLB80>3.0.CO;2-Z

    Article  CAS  Google Scholar 

  51. Facca AG, Kortschot MT, Yan N (2006) Predicting the elastic modulus of natural fiber reinforced thermoplastics. Composites Part A: Applied Science and Manufacturing 37:1660–1671. doi:10.1016/j.compositesa.2005.10.006

    Article  Google Scholar 

  52. Omnès B, Thuillier S, Pilvin P, Grohens Y, Gillet S (2008) Effective properties of carbon black filled natural rubber: experiments and modeling. Compsites Part A: Applied Science and Manufacturing 39:1141–1149. doi:10.1016/j.compositesa.2008.04.003

    Article  Google Scholar 

  53. Medalia AI (1972) Effective degree of immobilization of rubber occluded within carbon black aggregates. Rubber Chem Technol 45(5):1171–1194. doi:10.5254/1.3544731

    Article  CAS  Google Scholar 

  54. Halpin JC, Kardos JL (1972) Moduli of crystalline polymers employing composite theory. J Appl Phys 43:2235–2241. doi:10.1063/1.1661482

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Miss Ayano Isoda and Yuko Oorui and Messrs. Hisahiro Sawabe, Toshiya Suda, Takanori Himeno, and Masaru Hashimoto of Nissan ARC, Ltd., and Mr. Yuki Kasahara of Kyoto Institute of Technology, and Professor Emeritus Shizo Kohjiya of the Kyoto University for their valuable cooperation with this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Kato.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 592 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kato, A., Ikeda, Y., Tsushi, R. et al. A new approach to visualizing the carbon black/natural rubber interaction layer in carbon black-filled natural rubber vulcanizates and to elucidating the dependence of mechanical properties on quantitative parameters. Colloid Polym Sci 291, 2101–2110 (2013). https://doi.org/10.1007/s00396-013-2948-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-013-2948-3

Keywords

Navigation