Skip to main content
Log in

Contact angle hysteresis in multiphase systems

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Contact angle (CA) hysteresis is the difference between the maximum (advancing) and minimum (receding) water CA. Hysteresis is caused by adhesion hysteresis in the solid–water contact area (2D effect) and by pinning of the solid–water–air triple line due to the surface roughness (1D effect). In this work, we show that CA hysteresis is present also in more complex systems, such as an organic liquid (oil) in contact with a solid immersed in water. In order to decouple the 1D and 2D effects, we study CA hysteresis in solid–water–air (droplet), solid–air–water (bubble), solid–water–oil, and solid–water–air–oil systems involving rough and microstructured surfaces. The comparative analysis of these systems allows decoupling the 1D and 2D effects as well as hydrogen bonding and entropic forces (water–air tension) and dispersion forces (oil–air tension).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Young T (1805) Phil Trans R Soc Lond 95:65–87

    Article  Google Scholar 

  2. Cammarata RC (1994) Prog Surf Sci 46:1–38

    Article  CAS  Google Scholar 

  3. Krasovitski B, Marmur A (2005) Langmuir 21:3881–3885

    Article  CAS  Google Scholar 

  4. Rayleigh L (1891) Nature 43:437–439

    Article  Google Scholar 

  5. Pockels A (1914) Physik Z 15:39–46

    CAS  Google Scholar 

  6. Ablett R (1923) Phil Mag 46:224

    Google Scholar 

  7. Adam NK, Jessop G (1925) J Chem Soc 127:1863

    Article  CAS  Google Scholar 

  8. Good RJ (1952) J Am Chem Soc 79:5041

    Article  Google Scholar 

  9. Shepard JW, Bartell FEJ (1953) J Phys Chem 57:458

    Article  CAS  Google Scholar 

  10. Nosonovsky M (2007) J Chem Phys 126:224701

    Article  Google Scholar 

  11. Carré A, Mittal KL (2009) Superhydrophobic surfaces. VSP/Brill, Leiden

    Google Scholar 

  12. Jin M, Feng X, Feng L, Sun T, Zhai J, Li T, Jiang L (2005) Adv Mater 17:1977–1981

    Article  CAS  Google Scholar 

  13. Nosonovsky M, Bhushan B (2008) Multiscale dissipative mechanisms and hierarchical surfaces: Friction, superhydrophobicity and biomimetics. Springer, Verlag

    Google Scholar 

  14. Bormashenko E, Stein T, Pogreb R, Aurbach D, Phys J (2009) Chem C 113:5568–5572

    CAS  Google Scholar 

  15. Li W, Amirfazli A (2007) Adv Mater 19:3421–3422

    Article  CAS  Google Scholar 

  16. Gao L, McCarthy TJ (2008) Langmuir 24:9184–9188

    Google Scholar 

  17. Wang S, Jiang L (2007) Adv Mater 19:3423–3424

    Article  CAS  Google Scholar 

  18. Chang FM, Hong SJ, Sheng YJ, Tsao HK (2009) Appl Phys Lett 95:064102

    Article  Google Scholar 

  19. Bormashenko E, Bormashenko Y, Stein T, Whyman G, Pogreb R (2007) Langmuir 23:4378–4382

    Article  CAS  Google Scholar 

  20. Xia F, Jiang L (2008) Adv Mater 20:2842–2858

    Article  CAS  Google Scholar 

  21. Wenzel RN (1936) Ind Eng Chem 28:988

    Article  CAS  Google Scholar 

  22. Cassie ABD, Baxter S (1944) Trans Faraday Soc 40:546–551

    Article  CAS  Google Scholar 

  23. Feng L, Zhang Y, Xi J, Zhu Y, Wang N, Xia F, Jiang L (2008) Langmuir 24:4114–4119

    Article  CAS  Google Scholar 

  24. McHale G (2009) Langmuir 25:7185–7187

    Article  CAS  Google Scholar 

  25. Bhushan B, Nosonovsky M (2010) Phil Trans R Soc A 368:4713–4728

    Article  CAS  Google Scholar 

  26. Bormashenko E. (2012) J Colloid Polym Sci, in press.

  27. Hejazi V, Nosonovsky M (2011) Langmuir. Vol 28:2173–2180

    Google Scholar 

  28. de Gennes PG, Brochard-Wyart F, Quéré D (2004) Capillarity and wetting phenomena: Drops, bubbles, pearls, waves. Springer

  29. Extrand CW (1998) J Colloid Interface Sci 207:11–19

    Article  CAS  Google Scholar 

  30. Bormashenko E, Bormashenko Y, Whyman G, Pogreb R, Musin A, Jager R, Barkay Z (2008) Langmuir 24(8):4020–4025

    Article  CAS  Google Scholar 

  31. Nosonovsky M, Bhushan B (2008) J Phys: Condens Matter 20, 395005

    Google Scholar 

  32. Nosonovsky M, Bhushan B (2009) Phil Trans Royal Soc A367:1511–1539

    Google Scholar 

  33. Nosonovsky M, Hejazi V, Nyong AE, Rohatgi PK (2011) Langmuir 27:14419–14424

    Article  CAS  Google Scholar 

  34. Hejazi V, Nyong AE, Rohatgi PK, Nosonovsky M (2012) Adv Mater. doi:10.1002/adma.201202516

  35. Wong T-S, Kang SH, Tang SKY, Smythe EJ, Hatton BD, Grinthal A, Aizenburg J (2011) Nature 477:443–447

    Article  CAS  Google Scholar 

  36. Nosonovsky M (2011) Nature 477:412–413

    Article  CAS  Google Scholar 

  37. Bormashenko E (2010) Am J Phys 78:1309–1311

    Article  CAS  Google Scholar 

  38. Israelachvili JN (2011) Intermolecular and surface forces, 3rd edn. Academic Press, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Nosonovsky.

Additional information

This article is part of the Topical Collection on Contact Angle Hysteresis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hejazi, V., Nosonovsky, M. Contact angle hysteresis in multiphase systems. Colloid Polym Sci 291, 329–338 (2013). https://doi.org/10.1007/s00396-012-2838-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-012-2838-0

Keywords

Navigation