Skip to main content
Log in

Sulfur-containing silsesquioxane hybrids with high refractive index and high Abbe number

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Novel sulfur-containing silsesquioxane nanoparticles, (RS–SiO1.5) n , having uniform size distribution, good solubility, and relatively high refractive index were synthesized by hydrolytic condensation of a triethoxysilane precursor derived from glycidol, followed by the esterification with sulfur-containing acid chlorides. Esterification of the water-soluble silsesquioxane nanoparticles with 3-(methylthio)propionyl chloride afforded silsesquioxane hybrid with a high density of chemically bonded peripheral methyl thioether groups, which was characterized by 1H, 13C NMR, Fourier transform infrared spectroscopy, and thermogravimetric analysis measurements. The resulting product was soluble in various organic solvents, such as CHCl3, acetone, tetrahydrofuran, dimethyl formamide, and dimethyl sulfoxide. The size of the sulfur-containing nanoparticles evaluated by X-ray diffraction was 2.1 nm. Transmission electron microscopy, gel permeation chromatography, and dynamic light scattering measurements indicated the formation of the nanoparticles having relatively narrow size distribution with an average particle diameter of less than 3 nm without aggregation. The sulfur content of the methyl thioether-containing silsesquioxane hybrid analyzed by elemental analysis was 16.1 %, which led to relatively high refractive index (n D = 1.588) and high Abbe number (34.4). Two sulfur-containing silsesquioxane hybrids with peripheral thiophene and phenyl thioether moieties were also obtained by the same procedure, and resulting hybrids showed high refractive indices of 1.605 and 1.627, and Abbe numbers of 31.8 and 24.3, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liu J-g, Ueda M (2009) High refractive index polymers: fundamental research and practical applications. J Mater Chem 19:8907–8919

    Article  CAS  Google Scholar 

  2. Lu C, Yang B (2009) High refractive index organic–inorganic nanocomposites: design, synthesis and application. J Mater Chem 19:2884–2901

    Article  Google Scholar 

  3. Helmut D (1979) Plastics as optical materials. Angew Chem Int Ed 18:49–59

    Article  Google Scholar 

  4. Yang C-J, Jenekhe SA (1995) Group contribution to molar refraction and refractive index of conjugated polymers. Chem Mater 7:1276–1285

    Article  CAS  Google Scholar 

  5. Eisenberg P, Erra-Balsells R, Ishikawa Y, Lucas JC, Mauri AN, Nonami H et al (2000) Cagelike precursors of high-molar-mass silsesquioxanes formed by the hydrolytic condensation of trialkoxysilanes. Macromolecules 33:1940–1947

    Article  CAS  Google Scholar 

  6. Feher FJ, Budzichowski TA (1995) Silasesquioxanes as ligands in inorganic and organometallic chemistry. Polyhedron 14:3239–3253

    Article  CAS  Google Scholar 

  7. Voronkov MG (1982) Lavrent’yev VI. Polyhedral oligosilsesquioxanes and their homo derivatives. Top Curr Chem 102:199–236

    Article  CAS  Google Scholar 

  8. Pescarmona PP, Maschmeyer T (2001) Oligomeric silsesquioxanes: synthesis, characterization and selected applications. Aust J Chem 54:583–596

    Article  CAS  Google Scholar 

  9. Cordes DB, Lickiss PD, Rataboul F (2010) Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem Rev 110:2081–2173

    Article  CAS  Google Scholar 

  10. Sulaiman S, Bhaskar A, Zhang J, Guda R, Goodson T III, Laine RM (2008) Molecules with perfect cubic symmetry as nanobuilding blocks for 3-D assemblies. Elaboration of octavinylsilsesquioxane. Unusual luminescence shifts may indicate extended conjugation involving the silsesquioxane core. Chem Mater 20(17):5563–73

    Article  CAS  Google Scholar 

  11. Kannan RY, Salacinski HJ, Butler PE, Seifalian AM (2005) Polyhedral oligomeric silsesquioxane nanocomposites: the next generation material for biomedical applications. Acc Chem Res 38:879–884

    Article  CAS  Google Scholar 

  12. Laine RM (2005) Nano-building blocks based on the [OSiO1.5]8 silsesquioxanes. J Mater Chem 15:3725–3744

    Article  CAS  Google Scholar 

  13. Lickiss PD, Rataboula F (2008) Chapter 1 fully condensed polyhedral oligosilsesquioxanes (POSS): from synthesis to application. Adv Organomet Chem 57:1–116

    Article  CAS  Google Scholar 

  14. Chen W, Liu W, Wu P, Chen P (2004) Synthesis and characterization of oligomeric phenylsilsesquioxane-titania hybrid optical thin films. Mater Chem Phys 83:71–77

    Article  CAS  Google Scholar 

  15. Mori H, Miyamura Y, Endo T (2009) Synthesis and characterization of water-soluble SiO1.5/TiO2 hybrid nanoparticles by hydrolytic co-condensation of triethoxysilane containing hydroxyl groups. Mater Chem Phys 115:287–295

    Article  CAS  Google Scholar 

  16. Choi J-K, Lee D-H, Rhee S-K, Jeong H-D (2010) Observation of tunable refractive indices and strong intermolecular interactions in newly synthesized methylene-biphenylene-bridged silsesquioxane thin films. J Phys Chem C 144:14233–14239

    Article  Google Scholar 

  17. Lucke S, Stoppek-Langner K, Kuchinke J, Krebs B (1999) Octakis-(dimethylphosphanoethyl)-octasilsesquioxane—synthesis, characterization and reactivity. J Organomet Chem 584:11–15

    Article  CAS  Google Scholar 

  18. Kotal A, Si S, Paira TK, Mandal TK (2008) Synthesis of semitelechelic POSS-polymethacrylate hybrids by thiol-mediated controlled radical polymerization with unusual thermal behaviors. J Polymer Sci, Part A: Polymer Chem 46:1111–1123

    Article  CAS  Google Scholar 

  19. Xu Z, Ni C, Yao B, Tao L, Zhu C, Han Q et al (2011) The preparation and properties of hybridized hydrogels based on cubic thiol-functionalized silsesquioxane covalently linked with poly(N-isopropylacrylamide) colloid and polymer. Science 289:1777–1782

    CAS  Google Scholar 

  20. Minami F, Yamamoto S-i, Miyasaka Y, Moriya O (2011) Synthesis of thermo- and pH-responsive polysilsesquioxane with carboxylic acid group. Polymer 52:4744–4752

    Article  CAS  Google Scholar 

  21. Matsukawa K, Fukuda T, Watase S, Goda H (2010) Preparation of photo-curable thiol-ene hybrids and their application for optical materials. J Photopolym Sci Technol 43:115–119

    Article  Google Scholar 

  22. Brick C, Ouchi Y, Chujo Y, Laine R (2005) Robust polyaromatic octasilsesquioxanes from polybromophenylsilsesquioxanes, BrxOPS, via Suzuki coupling. Macromolecules 38:4661–4665

    Article  CAS  Google Scholar 

  23. Xu J, Li X, Cho CM, Toh CL, Shen L, Mya KY et al (2009) Polyhedral oligomeric silsesquioxanes tethered with perfluoroalkylthioether corner groups: facile synthesis and enhancement of hydrophobicity of their polymer blends. J Mater Chem 19:4740–4745

    Article  CAS  Google Scholar 

  24. Ak M, Gacal B, Kiskan B, Yagci Y, Toppare L (2008) Enhancing electrochromic properties of polypyrrole by silsesquioxane nanocages. Polymer 49:2202–2210

    Article  CAS  Google Scholar 

  25. Gao Y, Eguchi A, Kakehi K, Lee YC (2004) Efficient preparation of glycoclusters from silsesquioxanes. Org Lett 6:3457–3460

    Article  CAS  Google Scholar 

  26. Hartmann-Thompson C, Merrington A, Carver PI, Keeley DL, Rousseau JL, Hucul D et al (2008) Proton-conducting polyhedral oligosilsesquioxane nanoadditives for sulfonated polyphenylsulfone hydrogen fuel cell proton exchange membranes. J Appl Polym Sci 110:958–974

    Article  CAS  Google Scholar 

  27. Liu L, Song L, Zhang S, Guo H, Hu Y, Fan W (2006) Synthesis and characterization of ion-exchangeable layered octabenzenesulphonate polyhedral oligomeric silsesquioxanes modified by surfactant. Mater Lett 60:1823–1827

    Article  CAS  Google Scholar 

  28. Hartmann-Thompson C, Keeley DL, Pollock KM, Dvornic PR, Keinath SE, Dantus M et al (2008) One- and two-photon fluorescent polyhedral oligosilsesquioxane (POSS) nanosensor arrays for the remote detection of analytes in clouds, in solution, and on surfaces. Chem Mater 20:2829–2838

    Article  CAS  Google Scholar 

  29. Zhang W, Fang B, Walther A, Mueller AHE (2009) Synthesis via RAFT polymerization of tadpole-shaped organic/inorganic hybrid poly(acrylic acid) containing polyhedral oligomeric silsesquioxane (POSS) and their self-assembly in water. Macromolecules 42:2563–2569

    Article  CAS  Google Scholar 

  30. Zhang W, Liu L, Zhuang X, Li X, Bai J, Chen Y (2008) Synthesis and self-assembly of tadpole-shaped organic/inorganic hybrid poly(N-isopropylacrylamide) containing polyhedral oligomeric silsesquioxane via RAFT polymerization. J Polymer Sci, Part A: Polymer Chem 46:7049–7061

    Article  CAS  Google Scholar 

  31. Mori H, Lanzendörfer MG, Müller AHE, Klee JE (2004) Silsesquioxane-based nanoparticles formed via hydrolytic condensation of organotriethoxysilane containing hydroxy groups. Macromolecules 37:5228–5238

    Article  CAS  Google Scholar 

  32. Mori H, Müller AHE, Klee JE (2003) Intelligent colloidal hybrids via reversible pH-induced complexation of polyelectrolyte and silica nanoparticles. J Am Chem Soc 125:3712–3713

    Article  CAS  Google Scholar 

  33. Mori H, Lanzendörfer MG, Mülller AHE, Klee JE (2003) Organic–inorganic nano-assembly based on complexation of cationic silica nanoparticles and weak anionic Polyelectrolytes in aqueous and alcohol media. Langmuir 20:1934–1944

    Article  Google Scholar 

  34. Muthukrishnan S, Plamper F, Mori H, Müller AHE (2005) Synthesis and characterization of glycomethacrylate hybrid stars from silsesquioxane nanoparticles. Macromolecules 38:10631–10642

    Article  CAS  Google Scholar 

  35. Xua J, Shi W (2006) Synthesis and crystallization kinetics of silsesquioxane-based hybrid star poly(ε-caprolactone). Polymer 47:5161–5173

    Article  Google Scholar 

  36. Gunawidjaja R, Huang F, Gumenna M, Klimenko N, Nunnery GA, Shevchenko V et al (2009) Bulk and surface assembly of branched amphiphilic polyhedral oligomer silsesquioxane compounds. Langmuir 25:1196–1209

    Article  CAS  Google Scholar 

  37. Schumacher M, Ruppel M, Yuan J, Schmalz H, Colombani O, Drechsler M et al (2009) Smart organic–inorganic nanohybrids based on amphiphilic block copolymer Micelles and functional silsesquioxane nanoparticles. Langmuir 25:3407–3417

    Article  CAS  Google Scholar 

  38. Bliznyuk VN, Tereshchenko TA, Gumenna MA, Gomza YP, Shevchuk AV, Klimenko NS et al (2008) Structure of segmented poly(ether urethane)s containing amino and hydroxyl functionalized polyhedral oligomeric silsesquioxanes (POSS). Polymer 49:2298–2305

    Article  CAS  Google Scholar 

  39. Sheen Y-C, Lu C-H, Huang C-F, Kuo S-W, Chang F-C (2008) Synthesis and characterization of amorphous octakis-functionalized polyhedral oligomeric silsesquioxanes for polymer nanocomposites. Polymer 49:4017–4024

    Article  CAS  Google Scholar 

  40. Laine RM, Roll MF (2011) Polyhedral phenylsilsesquioxanes. Macromolecules 44:1073–1109

    Article  CAS  Google Scholar 

  41. Liu C, Liu Y, Shen Z, Xie P, Dai D, Zhang R et al (2001) Synthesis and characterization of novel alcohol-soluble ladderlike poly(silsesquioxane)s containing side-chain hydroxy groups. Macromol Chem Phys 202:1576–1580

    Article  CAS  Google Scholar 

  42. Mori H, Sada C, Konno T, Yonetake K (2011) Synthesis and characterization of low-refractive-index fluorinated silsesquioxane-based hybrids. Polymer 52:5452–5463

    Article  CAS  Google Scholar 

  43. Mori H, Sada C, Konno T, Koizumi R, Yonetake K (2012) Film-forming amphiphilic silsesquioxane hybrids prepared by hydrolytic co-condensation of hydroxyl-functionalized and fluorinated triethoxysilanes. Polymer 53:3849–3860

    Article  CAS  Google Scholar 

  44. Mori H, Yamada M (2012) Synthesis and characterization of cationic silsesquioxane hybrids by hydrolytic condensation of triethoxysilane derived from 2-(dimethylamino)ethyl acrylate. Collied Polym Sci (in press)

  45. Mori H, Miyamura Y, Endo T (2007) Synthesis and characterization of water-soluble silsesquioxane-based nanoparticles by hydrolytic condensation of triethoxysilane derived from 2-hydroxyethyl acrylate. Langmuir 23:9014–9023

    Article  CAS  Google Scholar 

  46. Zhang C, Laine RM (2000) Hydrosilylation of allyl alcohol with [HSiMe2OSiO1.5]8: octa(3-hydroxy-propyldi-methylsiloxy)octasilsesquioxane and its octamethacrylate derivative as potential precursors to hybrid nanocomposites. J Am Chem Soc 122:6979–88

    Article  CAS  Google Scholar 

  47. Choi J, Yee AF, Laine RM (2003) Organic/inorganic hybrid composites from cubic silsesquioxanes. Epoxy resins of octa(dimethylsiloxyethylcyclohexylepoxide) silsesquioxane. Macromolecules 36:5666–5682

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Adaptable & Seamless Technology Transfer Program through Target-driven R&D (A-STEP) from Japan Science and Technology Agency (JST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideharu Mori.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

PDF 474 kb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mori, H., Takahashi, K., Koizumi, R. et al. Sulfur-containing silsesquioxane hybrids with high refractive index and high Abbe number. Colloid Polym Sci 291, 1085–1094 (2013). https://doi.org/10.1007/s00396-012-2831-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-012-2831-7

Keywords

Navigation