Skip to main content
Log in

Drying dissipative structures of lightly cross-linked poly(2-vinyl pyridine) cationic gel spheres stabilized with poly(ethylene glycol) in the deionized aqueous suspension

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Drying dissipative patterns of deionized and colloidal crystal-state suspensions of the cationic gel spheres of lightly cross-linked poly(2-vinyl pyridine) stabilized with poly(ethylene glycol) were observed on a cover glass, a watch glass, and a Petri glass dish. Convectional patterns were recognized with the naked eyes. The broad rings were observed in the drying pattern and their size and width decreased as gel concentration decreased. Formation of the monodispersed agglomerated particles and their ordered arrays were observed. This work clarified the formation of the drying microscopic structures of (a) ordered rings, (b) flickering ordered spoke-lines, (c) net structure, and (d) lattice-like ordered structures of the agglomerated particles. The ordering of the agglomerated particles of the cationic gel spheres is similar to that of the anionic thermo-sensitive gel spheres of poly(N-isopropyl acrylamide). The role of the electrical double layers around the agglomerated particles and the interaction of the particles with the substrates during dryness are important for the ordering. The microscopic drying patterns of gel spheres were different from those of linear-type polymers and also from typical colloidal hard spheres, though the macroscopic patterns such as broad ring formation at the edges were similar to each other. The addition of sodium chloride shifted the microscopic patterns from lattice to net structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Okubo T (2006) In: Stoylov SP, Stoimenova MV (eds) Molecular and colloidal electro-optics. Taylor & Francis, New York, p 573

    Google Scholar 

  2. Okubo T (2008) In: Nagarajan R, Hatton TA (eds) Nanoparticles: syntheses, stabilization, passivation and functionalization. ACS Book, Washington, p 256

    Chapter  Google Scholar 

  3. Okubo T (2010) Macromol Symp 288:67

    Article  CAS  Google Scholar 

  4. Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA (1997) Nature 389:827

    Article  CAS  Google Scholar 

  5. Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA (2000) Phys Rev E 62:756

    Article  CAS  Google Scholar 

  6. Gribbin G (1999) Almost everyone’s guide to science. The universe, life and everything. Yale University Press, New Haven

    Google Scholar 

  7. Ball P (1999) The self-made tapestry. Pattern formation in nature. Oxford University Press, Oxford

    Google Scholar 

  8. Terada T, Yamamoto R, Watanabe T (1934) Sci Paper Inst Phys Chem Res Jpn 27:173, Proc Imper Acad Tokyo 10:10

    Google Scholar 

  9. Terada T, Yamamoto R, Watanabe T (1934) Sci Paper Inst Phys Chem Res Jpn 27:75

    Google Scholar 

  10. Nakaya U (1947) Memoirs of Torahiko Terada (Japanese). Kobunsya, Tokyo

    Google Scholar 

  11. Okubo T, Kimura H, Kimura T, Hayakawa F, Shibata T, Kimura K (2005) Colloid Polym Sci 283:1

    Article  Google Scholar 

  12. Okubo T (2006) Colloid Polym Sci 285:225

    Article  CAS  Google Scholar 

  13. Okubo T (2009) Colloid Polym Sci 287:167

    Article  CAS  Google Scholar 

  14. Okubo T, Okamoto J, Tsuchida A (2009) Colloid Polym Sci 287:351

    Article  CAS  Google Scholar 

  15. Okubo T, Okamoto J, Tsuchida A (2009) Colloid Polym Sci 287:645

    Article  CAS  Google Scholar 

  16. Palmer HJ (1976) J Fluid Mech 75:487

    Article  Google Scholar 

  17. Anderson DM, Davis SH (1995) Phys Fluids 7:248

    Article  CAS  Google Scholar 

  18. Pouth AF, Russel WB (1998) AIChE J 44:2088

    Article  Google Scholar 

  19. Burelbach JP, Bankoff SG (1998) J Fluid Mech 195:463

    Article  Google Scholar 

  20. Fischer BJ (2002) Langmuir 18:60

    Article  CAS  Google Scholar 

  21. Okubo T (2006) Colloid Polym Sci 284:1191

    Article  CAS  Google Scholar 

  22. Okubo T (2006) Colloid Polym Sci 284:1395

    Article  CAS  Google Scholar 

  23. Okubo T, Okamoto J, Tsuchida A (2007) Colloid Polym Sci 285:967

    Article  CAS  Google Scholar 

  24. Okubo T (2007) Colloid Polym Sci 285:1495

    Article  CAS  Google Scholar 

  25. Okubo T, Okamoto J, Tsuchida A (2008) Colloid Polym Sci 286:385

    Article  CAS  Google Scholar 

  26. Okubo T, Okamoto J, Tsuchida A (2008) Colloid Polym Sci 286:941

    Article  CAS  Google Scholar 

  27. Yamaguchi T, Kimura K, Tsuchida A, Okubo T, Matsumoto M (2005) Colloid Polym Sci 283:1123

    Article  CAS  Google Scholar 

  28. Okubo T (2006) Colloid Polym Sci 285:331

    Article  CAS  Google Scholar 

  29. Vanderhoff JW (1973) J Polym Sci Symp 41:155

    Article  Google Scholar 

  30. Nicolis G, Prigogine I (1977) Self-organization in non-equilibrium systems. Wiley, New York

    Google Scholar 

  31. Ohara PC, Heath JR, Gelbart WM (1997) Angew Chem 109:1120

    Article  Google Scholar 

  32. Maenosono S, Dushkin CD, Saita S, Yamaguchi Y (1999) Langmuir 15:957

    Article  CAS  Google Scholar 

  33. Nikoobakht B, Wang ZL, El-Sayed MA (2000) J Phys Chem 104:8635

    CAS  Google Scholar 

  34. Ung T, Litz-Marzan LM, Mulvaney P (2001) J Phys Chem B 105:3441

    Article  CAS  Google Scholar 

  35. Okubo T, Okamoto J, Tsuchida A (2010) Colloid Polym Sci 288:189

    Article  CAS  Google Scholar 

  36. Okubo T, Kanayama S, Ogawa H, Hibino M, Kimura K (2004) Colloid Polym Sci 282:230

    Article  CAS  Google Scholar 

  37. Okubo T, Okamoto J, Takahashi S, Tsuchida A (2009) Colloid Polym Sci 287:933

    Article  CAS  Google Scholar 

  38. Okubo T, Hagiwara A, Kitano H, Okamoto J, Takahashi S, Tsuchida A (2009) Colloid Polym Sci 287:1155

    Article  CAS  Google Scholar 

  39. Okubo T, Okamoto J, Tsuchida A (2010) Colloid Polym Sci 288:981

    Article  CAS  Google Scholar 

  40. Okubo T, Takahashi S, Tsuchida A (2011) Colloid Polym Sci 289:1729

    Google Scholar 

  41. Okubo T, Mizutani M, Takahashi S, Tsuchida A (2010) Colloid Polym Sci 288:1551

    Article  CAS  Google Scholar 

  42. Okubo T (2011) Colloid Polym Sci 289:159

    Article  CAS  Google Scholar 

  43. Okubo T (2011) Colloid Polym Sci 289:1205

    Article  CAS  Google Scholar 

  44. Okubo T, Mizutani M, Takahashi S, Tsuchida A (2010) Colloid Polym Sci 288:1435

    Article  CAS  Google Scholar 

  45. Okubo T, Takahashi S, Tsuchida A (2011) Colloids Surf B 87:11

    Article  CAS  Google Scholar 

  46. Okubo T (2011) Colloids Surf B 87:439

    Article  CAS  Google Scholar 

  47. Okubo T, Itoh E, Tsuchida A, Kokufuta E (2006) Colloid Polym Sci 285:339

    Article  CAS  Google Scholar 

  48. Okubo T, Suzuki D, Tsuchida A (2012) Colloid Polym Sci 290:867

    CAS  Google Scholar 

  49. Okubo T, Suzuki D, Yamagata T, Katsuno A, Mizutani M, Kimura H, Tsuchida A (2011) Colloid Polym Sci 289:807

    Article  CAS  Google Scholar 

  50. Okubo T, Suzuki D, Tsuchida A (2012) Colloid Polym Sci 290:411

    Article  CAS  Google Scholar 

  51. Okubo T, Suzuki D, Tsuchida A (2012) Colloid Polym Sci. doi:10.1007/s00396-012-2727-6

  52. Dupin D, Fujii S, Armes SP, Reeve P, Baxter SM (2006) Langmuir 22:3381

    Article  CAS  Google Scholar 

  53. Okubo T, Fujii S, Aono T, Nakamura Y, Tsuchida A (2012) Colloid Polym Sci. (submitted)

  54. Okubo T, Suzuki D, Yamagata T, Katsuno A, Sakurai M, Kimura H, Tsuchida A (2011) Colloid Polym Sci 289:291

    Article  CAS  Google Scholar 

  55. Okubo T, Suzuki D, Yamagata T, Horigome K, Shibata K, Tsuchida A (2011) Colloid Polym Sci 289:1273

    Article  CAS  Google Scholar 

  56. Suzuki D, Horigome K, Yamagata T, Shibata K, Tsuchida A, Okubo T (2011) Colloid Polym Sci 289:1799

    Article  CAS  Google Scholar 

  57. Suzuki D, Yamagata T, Horigome K, Shibata K, Tsuchida A, Okubo T (2012) Colloid Polym Sci 290:107

    Article  CAS  Google Scholar 

  58. Fujii S, Kameyama S, Armes SP, Dupin D, Suzaki M, Nakamura Y (2010) Soft Matter 6:635

  59. Okubo T, Okamoto J, Tsuchida A (2008) Colloid Polym Sci 286:1123

    Article  CAS  Google Scholar 

  60. Okubo T (2008) Colloid Polym Sci 286:1307

    Article  CAS  Google Scholar 

  61. Stoeber W, Fink A, Bohn E (1968) J Colloid Interface Sci 26:62

    Article  CAS  Google Scholar 

  62. Okubo T, Hongyo K, Enokida A (1984) J Chem Soc Faraday Trans 1:2087

    Google Scholar 

Download references

Acknowledgments

The research funds from AMX Co. (Tokyo) to T.O. are appreciated deeply. Financial supports for Scientific Research (B) to T.O. from Japan Society for the Promotion of Science are greatly acknowledged. S.F. acknowledges Grand-in-Aid for Challenging Exploratory Research (project no. 24655212) promoted by Japan Society for the Promotion of Science, and Grant-in-Aid for Scientific Research on Innovative Areas “Molecular Soft-Interface Science” from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsuneo Okubo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PPT 3390 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okubo, T., Fujii, S., Aono, K. et al. Drying dissipative structures of lightly cross-linked poly(2-vinyl pyridine) cationic gel spheres stabilized with poly(ethylene glycol) in the deionized aqueous suspension. Colloid Polym Sci 291, 1019–1030 (2013). https://doi.org/10.1007/s00396-012-2825-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-012-2825-5

Keywords

Navigation