Skip to main content
Log in

Molecular weight between entanglements for linear d-glucans

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Dynamic viscoelasticity measurements were carried out for concentrated solutions of linear d-glucans in BmimCl to examine the effect of the linkage between repeating units of glucose on the rheological properties. The values of molecular weight between entanglements (M e) were determined for four d-glucans: curdlan, pullulan, cellulose, and amylose. From the concentration dependence of M e, the value of M e in the molten state (M e,melt) for each d-glucan was estimated as a material constant. The order of M e,melt became cellulose < pullulan < curdlan < amylose, indicating that the linkage is actually influential in M e,melt for the linear d-glucans. The relationship between M e,melt and the molecular structure of the d-glucans were discussed assuming that the values of M e,melt for the d-glucans primarily reflect the chain stiffness such as the characteristic ratio C on the analogy of synthetic polymers. Although the trend was not so clear, it was shown that N unit is a decreasing function of C .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ferry JD (1980) Viscoelastic properties of polymers. Wiley, New York

    Google Scholar 

  2. Doi M, Edwards SF (1986) The theory of polymer dynamics. Clarendon, Oxford

    Google Scholar 

  3. Graessley WW, Edwards SF (1981) Entanglement interactions in polymers and the chain contour concentration. Polymer 22:1329–1334

    Article  CAS  Google Scholar 

  4. Wu S (1989) Chain structure and entanglement. J Polym Sci B Polym Phys 27:723–741

    Article  CAS  Google Scholar 

  5. Fetters LJ, Lohse DJ, Richter D, Witten TA, Zirkel A (1994) Connection between polymer molecular weight, density, chain dimensions, and melt viscoelastic properties. Macromolecules 27:4639–4647

    Article  CAS  Google Scholar 

  6. Horinaka J, Honda S, Takigawa T (2009) Rheological properties of concentrated solutions of gellan in an ionic liquid. Carbohydr Polym 78:576–580

    Article  CAS  Google Scholar 

  7. Horinaka J, Yasuda R, Takigawa T (2011) Entanglement properties of cellulose and amylose in an ionic liquid. J Polym Sci B Polym Phys 49:961–965

    Article  CAS  Google Scholar 

  8. Horinaka J, Yasuda R, Takigawa T (2011) Entanglement network of agarose in various solvents. Polymer J 43:1000–1002

    Article  CAS  Google Scholar 

  9. Horinaka J, Yasuda R, Takigawa T (2012) Rheological properties of concentrated solutions of agarose in ionic liquid. J Appl Polym Sci 123:3023–3027

    Article  CAS  Google Scholar 

  10. Horinaka J, Yasuda R, Takigawa T (2012) Rheological properties of concentrated solutions of galactomannans in an ionic liquid. Carbohyr Polym 89:1018–1021

    Google Scholar 

  11. Buliga GS, Brant DA (1987) Temperature and molecular weight dependence of the unperturbed dimensions of aqueous pullulan. Int J Biol Macromol 9:71–76

    Article  CAS  Google Scholar 

  12. Onogi S, Masuda T, Kitagawa K (1970) Rheological properties of anionic polystyrenes. I. dynamic viscoelasticity of narrow-distribution polystyrenes. Macromolecules 3:109–116

    Article  CAS  Google Scholar 

  13. Masuda T, Toda N, Aoto Y, Onogi S (1972) Viscoelastic properties of concentrated solutions of poly(methyl methacrylate) in diethyl phthalate. Polym J 3:315–321

    Article  CAS  Google Scholar 

  14. Nemoto N, Ogawa T, Odani H, Kurata M (1972) Shear creep studies of narrow-distribution poly(cis-isoprene). III. concentrated solutions. Macromolecules 5:641–644

    Article  CAS  Google Scholar 

  15. Rees DA, Scott WE (1971) Polysaccharide conformation. Part VI. Computer model-building for linear and branched pyranoglycans. Correlations with biological function. Preliminary assessment of inter-residue forces in aqueous solution. Further interpretation of optical rotation in terms of chain conformation. J Chem Soc B 1971:469–479

  16. Kato T, Okamoto T, Tokuda T (1982) Solution properties and chain flexibility of pullulan in aqueous solution. Biopolymers 21:1623–1633

    Article  CAS  Google Scholar 

  17. Nakata M, Kawaguchi T, Kodama Y, Konno A (1998) Characterization of curdlan in aqueous sodium hydroxide. Polymer 39:1475–1481

    Article  CAS  Google Scholar 

  18. Hirano I, Einaga Y, Fujita H (1979) Curdlan (bacterial β-1,3-glucan) in an cadoxen–water mixture. Polym J 11:901–904

    Article  CAS  Google Scholar 

  19. Zhang H, Nishinari K (2009) Characterization of the conformation and comparison of shear and extensional properties of curdlan in DMSO. Food Hydrocolloids 23:1570–1578

    Article  CAS  Google Scholar 

  20. Brant DA, Burton BA (1981) Solution properties of polysaccharides, Chap 7. American Chemical Society, Washington, pp 81–99

  21. Saalwaechter K, Burchard W, Kluefers P, Kettenbach G, Mayer P, Klemm D, Dugarmaa S (2000) Cellulose solutions in water containing metal complexes. Macromolecules 33:4094–4107

    Article  CAS  Google Scholar 

  22. Cai J, Liu Y, Zhang L (2006) Dilute solution properties of cellulose in LiOH/urea aqueous system. J Polym Sci B Polym Phys 44:3093–3101

    Article  CAS  Google Scholar 

  23. Nakanishi Y, Norisuye T, Teramoto A, Kitamura S (1993) Conformation of amylose in dimethyl sulfoxide. Macromolecules 26:4220–4225

    Article  CAS  Google Scholar 

  24. Norisuye T (1994) Viscosity behavior and conformation of amylose in various solvents. Polym J 26:1303–1307

    Article  CAS  Google Scholar 

  25. Goebel KD, Brant DA (1970) The configuration of amylose and its derivatives in aqueous solution. Experimental results. Macromolecules 3:634–643

    Article  Google Scholar 

  26. Ring SG, I’Anson KJ, Morris VJ (1985) Static and dynamic light scattering studies of amylose solutions. Macromolecules 18:182–188

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-ichi Horinaka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horinaka, Ji., Okuda, A., Yasuda, R. et al. Molecular weight between entanglements for linear d-glucans. Colloid Polym Sci 290, 1793–1797 (2012). https://doi.org/10.1007/s00396-012-2728-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-012-2728-5

Keywords

Navigation