Skip to main content
Log in

Drying dissipative structures of thermosensitive gel spheres of poly (N-isopropylacrylamide). Influence of gel size

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Drying dissipative patterns of de-ionized suspensions (colloidal crystal-state at high concentrations) of the thermosensitive gels of poly (N-isopropylacrylamide) with various sizes (ca. 400–1,500 nm in diameter at 20 °C) were observed at 20 and 45 °C on a cover glass, a watch glass, and a Petri glass dish. The broad rings were observed and their size decreased as gel concentration decreased. Formation of the monodispersed agglomerated particles and their ordered arrays were observed irrespective of gel size. The macroscopic flickering spoke-like patterns were observed for the gel spheres from 70 to 600 nm in diameter at 20 °C, but almost disappeared for extremely large spheres, poly(N-isopropylacrylamide)(1500-5). This work clarified the formation of the drying microscopic structures of (a) ordered rings, (b) flickering ordered spoke lines, (c) net structure, and (d) lattice-like ordered structures of the agglomerated particles. The ordered rings became rather vague as gel size increased. The large net structures formed so often for large gels. Size effect on the lattice patterns was not recognized so clearly. The role of the electrical double layers around the agglomerated particles and the interaction of the particles with the substrate surfaces during dryness are important for the ordering. The microscopic drying patterns of gel spheres were quite different from those of linear type polymers and also from typical colloidal hard spheres, though the macroscopic patterns such as broad ring formation at the edges of the dried film were similar to each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Okubo T (2006) Molecular and colloidal electro-optics. SP Stoylov, MV Stoimenova (eds). Taylor & Francis: New York, p 573

  2. Okubo T (2008) Nanoparticles: syntheses, stabilization, passivation and functionalization. Nagarajan R, Hatton TA (eds). ACS Book: Washington DC, p 256

  3. Okubo T (2010) Macromol Symp 288:67

    Article  CAS  Google Scholar 

  4. Gribbin G (1999) Almost everyone’s guide to science. The universe, life and everything. Yale University Press, New Haven

    Google Scholar 

  5. Ball P (1999) The self-made tapestry. Pattern formation in nature. Oxford Univ Press, Oxford

    Google Scholar 

  6. Terada T, Yamamoto R, Watanabe T (1934) Sci Paper Inst Phys Chem Res Jpn 27:173, Proc Imper Acad Tokyo 10:10

    Google Scholar 

  7. Terada T, Yamamoto R, Watanabe T (1934) Sci Paper Inst Phys Chem Res Jpn 27:75

    Google Scholar 

  8. Nakaya U (1947) Memoirs of Torahiko Terada (Japanese). Kobunsya, Tokyo

    Google Scholar 

  9. Okubo T, Kimura H, Kimura T, Hayakawa F, Shibata T, Kimura K (2005) Colloid Polym Sci 283:1

    Article  Google Scholar 

  10. Okubo T (2006) Colloid Polym Sci 285:225

    Article  CAS  Google Scholar 

  11. Okubo T (2009) Colloid Polym Sci 287:167

    Article  CAS  Google Scholar 

  12. Okubo T, Okamoto J, Tsuchida A (2009) Colloid Polym Sci 287:351

    Article  CAS  Google Scholar 

  13. Okubo T (2009) Colloid Polym Sci 287:645

    Article  CAS  Google Scholar 

  14. Palmer HJ (1976) J Fluid Mech 75:487

    Article  Google Scholar 

  15. Anderson DM, Davis SH (1995) Phys Fluids 7:248

    Article  CAS  Google Scholar 

  16. Pouth AF, Russel WB (1998) AIChEJ 44:2088

    Article  Google Scholar 

  17. Burelbach JP, Bankoff SG (1998) J Fluid Mech 195:463

    Article  Google Scholar 

  18. Fischer BJ (2002) Langmuir 18:60

    Article  CAS  Google Scholar 

  19. Okubo T (2006) Colloid Polym Sci 284:1191

    Article  CAS  Google Scholar 

  20. Okubo T (2006) Colloid Polym Sci 284:1395

    Article  CAS  Google Scholar 

  21. Okubo T, Okamoto J, Tsuchida A (2007) Colloid Polym Sci 285:967

    Article  CAS  Google Scholar 

  22. Okubo T (2007) Colloid Polym Sci 285:1495

    Article  CAS  Google Scholar 

  23. Okubo T, Okamoto J, Tsuchida A (2008) Colloid Polym Sci 286:385

    Article  CAS  Google Scholar 

  24. Okubo T, Okamoto J, Tsuchida A (2008) Colloid Polym Sci 286:941

    Article  CAS  Google Scholar 

  25. Yamaguchi T, Kimura K, Tsuchida A, Okubo T, Matsumoto M (2005) Colloid Polym Sci 283:1123

    Article  CAS  Google Scholar 

  26. Okubo T (2006) Colloid Polym Sci 285:331

    Article  CAS  Google Scholar 

  27. Vanderhoff JW (1973) J Polym Sci Symp 41:155

    Article  Google Scholar 

  28. Nicolis G, Prigogine I (1977) Self-organization in non-equilibrium systems. Wiley, New York

    Google Scholar 

  29. Ohara PC, Heath JR, Gelbart WM (1997) Angew Chem 109:1120

    Article  Google Scholar 

  30. Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA (1997) Nature 389:827

    Article  CAS  Google Scholar 

  31. Maenosono S, Dushkin CD, Saita S, Yamaguchi Y (1999) Langmuir 15:957

    Article  CAS  Google Scholar 

  32. Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA (2000) Phys Rev E 62:756

    Article  CAS  Google Scholar 

  33. Nikoobakht B, Wang ZL, El-Sayed MA (2000) J Phys Chem 104:8635

    Article  CAS  Google Scholar 

  34. Ung T, Litz-Marzan LM, Mulvaney P (2001) J Phys Chem B 105:3441

    Article  CAS  Google Scholar 

  35. Okubo T, Okamoto J, Tsuchida A (2010) Colloid Polym Sci 288:189

    Article  CAS  Google Scholar 

  36. Okubo T, Kanayama S, Ogawa H, Hibino M, Kimura K (2004) Colloid Polym Sci 282:230

    Article  CAS  Google Scholar 

  37. Okubo T, Okamoto J, Takahashi S, Tsuchida A (2009) Colloid Polym Sci 287:933

    Article  CAS  Google Scholar 

  38. Okubo T, Hagiwara A, Kitano H, Okamoto J, Takahashi S, Tsuchida A (2009) Colloid Polym Sci 287:1155

    Article  CAS  Google Scholar 

  39. Okubo T, Okamoto J, Tsuchida A (2010) Colloid Polym Sci 288:981

    Article  CAS  Google Scholar 

  40. Okubo T, Takahashi S, Tsuchida A, Colloid Polym Sci 289:1729

  41. Okubo T, Mizutani M, Takahashi S, Tsuchida A (2010) Colloid Polym Sci 288:1551

    Article  CAS  Google Scholar 

  42. Okubo T (2011) Colloid Polym Sci 289:159

    Article  CAS  Google Scholar 

  43. Okubo T (2011) Colloid Polym Sci 289:1205

    Article  CAS  Google Scholar 

  44. Okubo T, Mizutani M, Takahashi S, Tsuchida A (2010) Colloid Polym Sci 288:1435

    Article  CAS  Google Scholar 

  45. Okubo T, Takahashi S, Tsuchida A (2011) Colloids Surfaces B 87:11

    Article  CAS  Google Scholar 

  46. Okubo T (2011) Colloids Surfaces B 87:439

    Article  CAS  Google Scholar 

  47. Okubo T, Itoh E, Tsuchida A, Kokufuta E (2006) Colloid Polym Sci 285:339

    Article  CAS  Google Scholar 

  48. Okubo T, Suzuki D, Tsuchida A (2012) Colloid Polym Sci 290:867

    Article  CAS  Google Scholar 

  49. Okubo T, Suzuki D, Yamagata T, Katsuno A, Mizutani M, Kimura H, Tsuchida A (2011) Colloid Polym Sci 289:807

    Article  CAS  Google Scholar 

  50. Okubo T, Suzuki D, Tsuchida A (2012) Colloid Polym Sci 290:411

    Article  CAS  Google Scholar 

  51. Okubo T, Suzuki D, Yamagata T, Katsuno A, Sakurai M, Kimura H, Tsuchida A (2011) Colloid Polym Sci 289:291

    Article  CAS  Google Scholar 

  52. Okubo T, Suzuki D, Yamagata T, Horigome K, Shibata K, Tsuchida A (2011) Colloid Polym Sci 289:1273

    Article  CAS  Google Scholar 

  53. Suzuki D, Horigome K, Yamagata T, Shibata K, Tsuchida A, Okubo T (2011) Colloid Polym Sci 289:1799

    Article  CAS  Google Scholar 

  54. Suzuki D, Yamagata T, Horigome K, Shibata K, Tsuchida A, Okubo T (2011) Colloid Polym Sci 290:107

    Article  Google Scholar 

  55. Holtz JH, Asher SA (1997) Nature 389:829

    Article  CAS  Google Scholar 

  56. Pelton R (2000) Adv Colloid Interf Sci 85:1

    Article  CAS  Google Scholar 

  57. Xia Y, Cates B, Yin Y, Lu Y (2000) Adv Mater 12:693

    Article  CAS  Google Scholar 

  58. Hellweg T, Dewhurst CD, Bruckner E, Kratz K, Eimer W (2000) Colloid Polym Sci 278:972

    Article  CAS  Google Scholar 

  59. Debord JD, Lyon LA (2000) J Phys Chem B 104:6330

    Article  Google Scholar 

  60. Xia Y (2001) Adv Mater 13:369

    Article  CAS  Google Scholar 

  61. Gao J, Hu Z (2002) Langmuir 18:1360

    Article  CAS  Google Scholar 

  62. Stoeber W, Fink A, Bohn E (1968) J Colloid Interf Sci 26:62

    Article  CAS  Google Scholar 

  63. Okubo T, Hongyo K, Enokida A (2087) (1984) J Chem Soc. Faraday Trans 1 80:2087

    Google Scholar 

Download references

Acknowledgments

Financial supports to TO from the Ministry of Education, Culture, Sports, Science and Technology, Japan for Exploratory Research and those for Scientific Research (B) to TO, DS, and AT from Japan Society for the Promotion of Science are greatly acknowledged. DS also acknowledges Grand-in-Aid for Young Scientists (A) from the Ministry of Education, Culture, Sports, Science and Technology of Japan (22685024). The research funds from AMX Co. (Tokyo) to TO are appreciated deeply. The authors thank Tomoyo Yamagata and Koji Horigome for their help in preparing the gel spheres.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsuneo Okubo.

Electronic supplementary material

Fig. S1. Drying patterns of pNIPAm(400-5) (A), pNIPAm(600-5) (B) and pNIPAm(1500-5) spheres (C) on a cover glass {a–e (a, c), a–d (b), 0.1 ml}, a watch glass {f–j (a, c), eh (b), 0.7 ml} and a glass dish {ko (a, c), i–l (b), 0.7 ml} at 20 °C. Humidity = 35 %; a, f, k (a) 3.89 wt%; a, e, i (b) 3.88 wt%; a, f, k (c) 3.10 wt%; b, g, l (a) 0.97 wt%; b, f, j (b) 1.16 wt%; b, g, l (c) 0.78 wt%; c, h, m (a) 0.195 wt%; c, g, k (b) 0.194 wt%; c, h, m (c) 0.155 wt%; d, i, n (a) 0.052 wt%; d, h, l (b) 0.078 wt%; d, i, n (c) 0.0413 wt%; e, j, o (a) 0.0195 wt%; e, j, o (c) 0.0155 wt%

Fig. S2. Microscopic drying patterns of pNIPAm(400-5) (a), pNIPAm(600-5) (b) and pNIPAm(1500-5) (c) on a cover glass (a–d, 0.1 ml) a watch glass (e–h, 0.7 ml) and a glass dish (i–p, 0.7 ml) at 20 °C. Humidity = 35 %, a–h 0.97 wt% (a), 3.88 wt% (b), 0.78 wt% (c), i-l 3.89 wt% (a), 3.88 wt% (b), 3.10 wt% (c), m–p 0.97 wt% (a), 1.16 wt% (b), 0.78 wt% (c), ad (ac) are the pictures from the left edge to the right; e, i, m to h, l, p are from the center to the right edge, full scale is 100 μm

Fig. S3. Microscopic patterns of pNIPAm(400-5) (a), pNIPAm(600-5) (b) and pNIPAm(1500-5) gels (c) at 45 and 20 °C. Circles ordered ring, triangles ordered spoke-line, crosses net, squares lattice

ESM 1

PPT 1,978 kb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okubo, T., Suzuki, D. & Tsuchida, A. Drying dissipative structures of thermosensitive gel spheres of poly (N-isopropylacrylamide). Influence of gel size. Colloid Polym Sci 290, 1901–1911 (2012). https://doi.org/10.1007/s00396-012-2727-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-012-2727-6

Keywords

Navigation