Skip to main content
Log in

Fabrication of 1D Fe3O4/P(NIPAM-MBA) thermosensitive nanochains by magnetic-field-induced precipitation polymerization

  • Short Communication
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

One-dimensional (ID) magnetic thermosensitive Fe3O4/poly(N-isopropylacrylamide–N,N′-methylenebisacrylamide) (P(NIPAM-MBA)) peapod-like nanochains have been successfully synthesized by magnetic-field-induced precipitation polymerization using Fe3O4 as building blocks and P(NIPAM-MBA) as linker. Fe3O4 microspheres can be arranged with the direction of an external magnetic field in a line via the dipolar interaction between Fe3O4 microspheres and linked permanently via P(NIPAM-MBA) coating during precipitation polymerization. 1D magnetic Fe3O4/P(NIPAM-MBA) peapod-like nanochains can be oriented and aligned along the direction of the external magnetic field. More interestingly, Fe3O4 microspheres in each peapod were regularly arranged in a line and periodically separated through the P(NIPAM-MBA) layers with a visible interparticle spacing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Wang D, Liu T, Yin J, Liu SY (2011) Stimuli-responsive fluorescent poly(N-isopropylacrylamide) microgels labeled with phenylboronic acid moieties as multifunctional ratiometric probes for glucose and temperatures. Macromolecules 44:2282–2290

    Article  CAS  Google Scholar 

  2. Tokarev I, Minko S (2010) Stimuli-responsive porous hydrogels at interfaces for molecular filtration, separation, controlled release, and gating in capsules and membranes. Adv Mater 22:3446–3462

    Article  CAS  Google Scholar 

  3. Motornov M, Roiter Y, Tokarev I, Minko S (2010) Stimuli-responsive nanoparticles, nanogels and capsules for integrated multifunctional intelligent systems. Prog Polym Sci 35:174–211

    Article  CAS  Google Scholar 

  4. Kumar A, Srivastava A, Galaev IY, Mattiasson B (2007) Smart polymers: physical forms and bioengineering applications. Prog Polym Sci 32:1205–1237

    Article  CAS  Google Scholar 

  5. Stuart MAC, Huck WTS, Genzer J, Müller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S (2010) Emerging applications of stimuli-responsive polymer materials. Nat Mater 9:101–113

    Article  Google Scholar 

  6. Díaz DD, Kühbeck D, Koopmans RJ (2010) Stimuli-responsive gels as reaction vessels and reusable catalysts. Chem Soc Rev 40:427–448

    Article  Google Scholar 

  7. Dadsetan M, Liu Z, Pumberger M, Giraldo CV, Ruesink T, Lu L, Yaszemski MJ (2010) A stimuli-responsive hydrogel for doxorubicin delivery. Biomaterials 31:8051–8062

    Article  CAS  Google Scholar 

  8. Hu J, Liu S (2010) Responsive polymers for detection and sensing applications: current status and future developments. Macromolecules 43:8315–8330

    Article  CAS  Google Scholar 

  9. Medeiros SF, Santos AM, Fessi H, Elaissari A (2011) Stimuli-responsive magnetic particles for biomedical applications. Int J Pharm 43(1–2):139–161

    Article  Google Scholar 

  10. Sauzedde F, Elaissari A, Pichot C (2000) Thermosensitive magnetic particles as solid phase support in an immunoassay. Macromol Symp 151(1):617–623

    Article  CAS  Google Scholar 

  11. Roy D, Cambre JN, Sumerlin BS (2010) Future perspectives and recent advances in stimuli-responsive materials. Prog Polym Sci 35:278–301

    Article  CAS  Google Scholar 

  12. Haraguchi K (2011) Stimuli-responsive nanocomposite gels. Colloid Polym Sci 289:455–473

    Article  CAS  Google Scholar 

  13. Pedron S, Lierop S, Horstman P, Penterman R, Broer DJ, Peeters E (2011) Stimuli responsive delivery vehicles for cardiac microtissue transplantation. Adv Funct Mater 21:1624–1630

    Article  CAS  Google Scholar 

  14. Kang H, Trondoli AC, Zhu G, Chen Y, Chang YJ, Liu H, Huang YF, Zhang X, Tan W (2011) Near-infrared light-responsive core–shell nanogels for targeted drug delivery. Acs Nano 5:5094–5099

    Article  CAS  Google Scholar 

  15. Yuan J, Xu Y, Muller AHE (2011) One-dimensional magnetic inorganic–organic hybrid nanomaterials. Chem Soc Rev 40:640–655

    Article  CAS  Google Scholar 

  16. Huang C, Zhou Y, Jin Y, Zhou X, Tang Z, Guo X, Zhou S (2011) Preparation and characterization of temperature-responsive and magnetic nanomicelles. J Mater Chem 21:5660–5670

    Article  CAS  Google Scholar 

  17. Luo S, Han M, Cao Y, Ling C, Zhang Y (2011) Temperature- and pH-responsive unimolecular micelles with a hydrophobic hyperbranched core. Colloid Polym Sci 289:1243–1251

    Article  CAS  Google Scholar 

  18. Rubio-Retama J, Zafeiropoulos NE, Serafinelli C, Rojas-Reyna R, Voit B, Cabarcos EL, Stamm M (2007) Synthesis and characterization of thermosensitive PNIPAM microgels covered with superparamagnetic γ-Fe2O3 nanoparticles. Langmuir 23:10280–10285

    Article  CAS  Google Scholar 

  19. Yoshida R, Okano T (2010) Stimuli-responsive hydrogels and their application to functional materials. In: Park K, Okano T (eds) Biomedical applications of hydrogels handbook. Springer, New York, pp 19–43

    Chapter  Google Scholar 

  20. Turturro SB, Guthrie MJ, Appel AA, Drapala PW, Brey EM, Pérez-Luna VH, Mieler WF, Kang-Mieler JJ (2011) The effects of cross-linked thermo-responsive PNIPAAm-based hydrogel injection on retinal function. Biomaterials 32:3620–3626

    Article  CAS  Google Scholar 

  21. Li Q, Zhang L, Bai L, Zhang Z, Zhu J, Zhou N, Cheng Z, Zhu X (2011) Multistimuli-responsive hybrid nanoparticles with magnetic core and thermoresponsive fluorescence-labeled shell via surface-initiated RAFT polymerization. Soft Matter 7:6958–6966

    Article  CAS  Google Scholar 

  22. Rahman MM, Chehimi MM, Fessi H, Elaissari A (2011) Highly temperature responsive core–shell magnetic particles: synthesis, characterization and colloidal properties. J Colloid Interface Sci 360:556–564

    Article  CAS  Google Scholar 

  23. Luo B, Song XJ, Zhang F, Xia A, Yang WL, Hu JH, Wang CC (2009) Multi-functional thermosensitive composite microspheres with high magnetic susceptibility based on magnetite colloidal nanoparticle clusters. Langmuir 26:1674–1679

    Article  Google Scholar 

  24. Ma W, Xu S, Li J, Guo J, Lin Y, Wang CC (2011) Hydrophilic dual-responsive magnetite/PMAA core/shell microspheres with high magnetic susceptibility and pH sensitivity via distillation-precipitation polymerization. J Polym Sci Part A: Polym Chem 49:2725–2733

    Article  CAS  Google Scholar 

  25. Ye F, Qin J, Toprak MS, Muhammed M (2011) Multifunctional core–shell nanoparticles: superparamagnetic, mesoporous, and thermosensitive. J Nanopart Res 13:6157–6167

    Article  CAS  Google Scholar 

  26. Reinicke S, Dohler S, Tea S, Krekhova M, Messing R, Schmidt AM, Schmalz H (2010) Magneto-responsive hydrogels based on maghemite/triblock terpolymer hybrid micelles. Soft Matter 6(12):2760–2773

    Article  CAS  Google Scholar 

  27. Schmidt AM (2007) Thermoresponsive magnetic colloids. Colloid Polym Sci 285(9):953–966

    Article  CAS  Google Scholar 

  28. Elaissari A (2006) Thermally sensitive colloidal particles: from preparation to biomedical applications. Progr Colloid Polym Sci 133:9–14

    Article  CAS  Google Scholar 

  29. Sauzedde F, Elaїssari A, Pichot C (1999) Hydrophilic magnetic polymer latexes. 1. Adsorption of magnetic iron oxide nanoparticles onto various cationic latexes. Colloid Polym Sci 277(9):846–855

    Article  CAS  Google Scholar 

  30. Pibre G, Hakenholz L, Braconnot S, Mouaziz H, Elaissari A (2009) Elaboration of stimuli responsive core–shell magnetic latexes from oil in water ferrofluid emulsion. e-Polym (139):1–15

  31. Gelbrich T, Marten GU, Schmidt AM (2010) Reversible thermoflocculation of magnetic core–shell particles induced by remote magnetic heating. Polymer 51(13):2818–2824

    Article  CAS  Google Scholar 

  32. Deng H, Li X, Peng Q, Wang X, Chen J, Li Y (2005) Monodisperse magnetic single-crystal ferrite microspheres. Angew Chem Int Ed 44:2782–2785

    Article  CAS  Google Scholar 

  33. Xu S, Ma WF, You LJ, Li JM, Guo J, Hu JJ, Wang CC (2012) Toward designer magnetite/polystyrene colloidal composite microspheres with controllable nanostructures and desirable surface functionalities. Langmuir 28(6):3271–3278

    Article  CAS  Google Scholar 

  34. Liu B, Zhang W, Yang F, Feng H, Yang X (2011) A facile method for synthesis of Fe3O4@polymer microspheres and their application as magnetic support for loading metal nanoparticles. J Phys Chem C 115:15875–15884

    Article  CAS  Google Scholar 

  35. Okubo T, Suzuki D, Yamagata T, Horigome K, Shibata K, Tsuchida A (2011) Colloidal crystallization of thermosensitive gel spheres of poly(N-isopropylacrylamide) with low degree of cross-linking. Colloid Polym Sci 289:1273–1281

    Article  CAS  Google Scholar 

  36. Zhang Z, Duan H, Li S, Lin Y (2010) Assembly of magnetic nanospheres into one-dimensional nanostructured carbon hybrid materials. Langmuir 26:6676–6680

    Article  CAS  Google Scholar 

  37. Schild HG (1992) Poly(N-isopropylacrylamide): experimental and application. Prog Polym Sci 17:163–249

    Article  CAS  Google Scholar 

  38. Ye M, Zorba S, He L, Hu Y, Maxwell RT, Farah C, Zhang Q, Yin Y (2010) Self-assembly of superparamagnetic magnetite particles into peapod-like structures and their application in optical modulation. J Mater Chem 20:7965–7969

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the National Natural Science Foundation of China (51173146), National Basic Research Program of China (2010CB635111), Basic Research Foundation of Northwestern Polytechnical University (G9KY1020 and JC201019), and the key programs of international technology cooperation of Shaanxi province (2011KW-12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiuyu Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, M., Zhang, Q., Dou, J. et al. Fabrication of 1D Fe3O4/P(NIPAM-MBA) thermosensitive nanochains by magnetic-field-induced precipitation polymerization. Colloid Polym Sci 290, 1207–1213 (2012). https://doi.org/10.1007/s00396-012-2696-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-012-2696-9

Keywords

Navigation