Skip to main content
Log in

Adsorption kinetics under the influence of barriers at the subsurface layer

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

At the initial stage of surfactant adsorption (when the layer is relatively diluted), the kinetics may be dominated by factors related to the transfer of molecules through the subsurface region and onto the interface. We consider two independent physical effects: (1) diffusion through a subsurface layer with nanometer thickness, where structuring or molecular interactions can impose substantial changes on the transfer rate, as compared with the bulk diffusion and (2) hindrance to the act of adsorption itself, when the molecules hit the interface from a place directly adjacent to it. These two effects are taken into account by formulating a model which includes the balance of fluxes in the subsurface layer. This model allows one to find analytical solution for the adsorption as a function of time. Application of the theory is illustrated by analyzing experimental data for two proteins which adsorb on air/water interface. Attention is paid to the particular case when the resistance to adsorption is relatively small but is still significant as compared with the bulk diffusion. Then, the theoretical fit of the adsorption vs. time can be implemented in a specific linear scale. The overall resistance of the interfacial zone comprises additive contributions from the hindrance to the act of adsorption and from the (retarded) diffusion through the subsurface layer. They are incorporated into one physical parameter (or characteristic time), which influences the kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Graham DE, Phillips MC (1979) J Colloid Interface Sci 70:403–414

    Article  CAS  Google Scholar 

  2. Middelberg APJ, Radke CJ, Blanch HW (2000) Proc Natl Acad Sci USA 97:5054–5059

    Article  CAS  Google Scholar 

  3. Ward AFH, Tordai L (1946) J Chem Phys 14:453–461

    Article  CAS  Google Scholar 

  4. Eastoe J, Dalton JS (2000) Adv Colloid Interface Sci 85:103–144

    Article  CAS  Google Scholar 

  5. Miller R, Makievski AV, Fainerman VB (2001) Dynamics of adsorption from solutions. In: Fainerman VB, Moebius D, Miller R (eds) Surfactants: chemistry, interfacial properties, applications. Elsevier, Amsterdam, p 287

    Google Scholar 

  6. Danov KD, Valkovska DS, Kralchevsky PA (2002) J Colloid Interface Sci 251:18–25

    Article  CAS  Google Scholar 

  7. Lyklema J (1991) Fundamentals of interfacial and colloid science. Fundamentals, vol 1. Academic, London

    Google Scholar 

  8. Eastoe J, Dalton JS, Rogueda PGA, Crooks ER, Pitt AR, Simister EA (1997) J Colloid Interface Sci 188:423–430

    Article  CAS  Google Scholar 

  9. MacRitchie F, Alexander AE (1963) J Colloid Sci 18:458–463

    Article  Google Scholar 

  10. Ravera F, Liggieri L, Steinchen A (1993) J Colloid Interface Sci 156:109–116

    Article  CAS  Google Scholar 

  11. Liggieri L, Ravera F, Passerone A (1996) Colloids Surfaces A 114:351–359

    Article  CAS  Google Scholar 

  12. Wierenga PA, Meinders MBJ, Egmond MR, Voragen AGJ, de Jongh HHJ (2003) Langmuir 19:8964–8970

    Article  CAS  Google Scholar 

  13. Pogorzelski SJ, Kogut AD (2001) Oceanologia 43:389–404

    Google Scholar 

  14. Song KB, Damodaran S (1991) Langmuir 7:2737–2742

    Article  CAS  Google Scholar 

  15. Liu F, Wang Zh, Sun D, Wei X, Zhou W, Li G, Zhang G (2006) J Dispersion Sci Technol 27:657–663

    Article  CAS  Google Scholar 

  16. Sengupta T, Razumovsky L, Damodaran S (1999) Langmuir 15:6991–7001

    Article  CAS  Google Scholar 

  17. Moorkanikkara SN, Blankschtein D (2006) J Colloid Interface Sci 296:442–457

    Article  CAS  Google Scholar 

  18. Moorkanikkara SN, Blankschtein D (2006) J Colloid Interface Sci 302:1–19

    Article  CAS  Google Scholar 

  19. MacLeod CA, Radke CJ (1994) Langmuir 10:3555–3566

    Article  CAS  Google Scholar 

  20. Israelachvili JN (1992) Intermolecular and surface forces. Academic, London

    Google Scholar 

  21. Basheva ES, Gurkov TD, Christov NC, Campbell B (2006) Colloids Surfaces A 282–283:99–108

    Article  Google Scholar 

  22. Eriksson JC, Henriksson U (2007) Langmuir 23:10026–10033

    Article  CAS  Google Scholar 

  23. Yousef A, Mc Coy BJ (1983) J Colloid Interface Sci 94:497–501

    Article  CAS  Google Scholar 

  24. Rakita Yu M, Fainerman VB (1989) Colloid J (USSR) 51:714–720

    Google Scholar 

  25. Baret JF (1968) J Phys Chem 72:2755–2758

    Article  CAS  Google Scholar 

  26. Miller R, Kretzschmar G (1980) Colloid & Polymer Sci 258:85–87

    Article  CAS  Google Scholar 

  27. Guzman RZ, Carbonell RG, Kilpatrick PK (1986) J Colloid Interface Sci 114:536–547

    Article  CAS  Google Scholar 

  28. Baret JF (1969) J Colloid Interface Sci 30:1–12

    Article  CAS  Google Scholar 

  29. Missen RW, Mims CA, Saville BA (1999) Introduction to chemical reaction engineering and kinetics. Wiley, New York

    Google Scholar 

  30. Diamant H, Andelman D (1996) J Phys Chem 100:13732–13742

    Article  CAS  Google Scholar 

  31. Diamant H, Ariel G, Andelman D (2001) Colloids Surfaces A 183–185:259–276

    Article  Google Scholar 

  32. Miller R, Aksenenko EV, Fainerman VB, Pison U (2001) Colloids Surfaces A 183–185:381–390

    Article  Google Scholar 

  33. Zhmud B, Tiberg F (2005) Adv Colloid Interface Sci 113:21–42

    Article  CAS  Google Scholar 

  34. Bain CD (2008) Adv Colloid Interface Sci 144:4–12

    Article  CAS  Google Scholar 

  35. Noskov BA (1996) Adv Colloid Interface Sci 69:63–129

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the EU program COST, Action D43—“Colloid and Interface Chemistry for Nanotechnology.” The author also wishes to thank the National Science Fund of Bulgaria (grants no. DO-02-82/2008 and DCVP-02/2-2009, National Centre for New Materials, “UNION”), for the partial financing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodor D. Gurkov.

Appendix

Appendix

Several inverse Laplace transformations, used for the derivations in the text, are listed below. With the auxiliary function

$$ F(p) \equiv {e^p}{\text{erfc}}\left( {\sqrt {p} } \right) $$
(38)

where \( {\text{erfc}}\;(y) \equiv 1 - \frac{2}{{\sqrt {\pi } }}\int\limits_0^y {{e^{{ - {z^2}}}}} {\text{d}}z \) is the complementary error function, one writes:

$$ {L^{{ - 1}}}\left[ {\frac{1}{{\sqrt {s} + \alpha }}} \right] = \frac{1}{{\sqrt {{\pi \;t}} }} - \alpha F\left( {{\alpha^2}t} \right) $$
(39)
$$ {L^{{ - 1}}}\left[ {\frac{1}{{\sqrt {s} \left( {\sqrt {s} + \alpha } \right)}}} \right] = F\left( {{\alpha^2}t} \right) $$
(40)
$$ {L^{{ - 1}}}\left[ {\frac{1}{{s\left( {\sqrt {s} + \alpha } \right)}}} \right] = \frac{1}{\alpha }\left[ {1 - F\left( {{\alpha^2}t} \right)} \right] $$
(41)
$$ {L^{{ - 1}}}\left[ {\frac{1}{{s\sqrt {s} \left( {\sqrt {s} + \alpha } \right)}}} \right] = \frac{2}{{\sqrt {\pi } }}\frac{{\sqrt {t} }}{\alpha } - \frac{1}{{{\alpha^2}}}\left[ {1 - F\left( {{\alpha^2}t} \right)} \right] $$
(42)

Here, L −1 denotes the inverse Laplace transform, α is an arbitrary constant (may be complex), t is time, and s is the Laplace variable.

Besides, from Eq. (34) it follows that F(0) = 1; F(∞) = 0.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gurkov, T.D. Adsorption kinetics under the influence of barriers at the subsurface layer. Colloid Polym Sci 289, 1905–1915 (2011). https://doi.org/10.1007/s00396-011-2511-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-011-2511-z

Keywords

Navigation