Skip to main content
Log in

Silica nanoparticle covered with mixed polymer brushes as Janus particles at water/oil interface

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Silica nanoparticles (NSiO2) are modified with mixed polymer brushes derived from a block copolymer precursor, poly(methyl methacrylate)-b-poly(glycidyl methacrylate)-b-poly(tert-butyl methacrylate) with short middle segment of PGMA, through one step “grafting-onto” approach. The block polymer precursors are prepared via reversible addition–fragmentation chain transfer-based polymerization of methyl methacrylate, glycidyl methacrylate, and tert-butyl methacrylate. The grafting is achieved by the reaction of epoxy group in short PGMA segment with silanol functionality of silica. After hydrolysis of poly(tert-butyl methacrylate) segment, amphiphilic NSiO2 with “V-shaped” polymer brushes possessing exact 1:1 molar ratio of different arms were prepared. The functionalized particles self-assemble at oil/water interfaces to form stable large droplets with average diameter ranging from 0.15 ± 0.06 to 2.6 ± 0.75 mm. The amphiphilicity of the particles can be finely tuned by changing the relative lengths of poly(methyl methacrylate) and poly(methacrylic acid) segments, resulting in different assembly behavior. The method may serve as a general way to control the surface property of the particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Pickering SU (1907) Emulsions. J Chem Soc 91:2001–2021

    Google Scholar 

  2. Tambe DE, Sharma MM (1994) The effect of colloidal particles on fluid-fluid interfacial properties and emulsion stability. Adv Colloid Interface Sci 52:1–63

    Article  CAS  Google Scholar 

  3. Aveyard R, Binks BP, Clint JH (2003) Emulsions stabilised solely by colloidal particles. Adv Colloid Interface Sci 100–102:503–546

    Article  Google Scholar 

  4. Binks BP, Lumsdon SO (2000) Catastrophic phase inversion of water-in-oil emulsions stabilized by hydrophobic silica. Langmuir 16:2539–2547

    Article  CAS  Google Scholar 

  5. Lin Y, Skaff H, Emrick T, Dinsmore AD, Russell TP (2003) Nanoparticle assembly and transport at liquid–liquid interfaces. Science 299:226–229

    Article  CAS  Google Scholar 

  6. Binks BP, Lumsdon SO (2000) Influence of particle wettability on the type and stability of surfactant-free emulsions. Langmuir 16:8622–8631

    Article  CAS  Google Scholar 

  7. Binks BP (2002) Particles as surfactants—similarities and differences. Curr Opin Colloid Interface Sci 7:21–24

    Article  CAS  Google Scholar 

  8. Horozov TS, Binks BP (2006) Particle-stabilized emulsions: a bilayer or a bridging monolayer. Angew Chem Int Ed 45:773–776

    Article  CAS  Google Scholar 

  9. Frelichowska J, Bolzinger MA, Pelletier J, Valour JP, Chevalier Y (2009) Topical delivery of lipophilic drugs from o/w Pickering emulsions. Int J Pharm 371:56–63

    Article  CAS  Google Scholar 

  10. Dinsmore AD, Hsu MF, Nikolaides MG, Marquez M, Bausch AR, Weitz DA (2002) Colloidosomes: selectively permeable capsules composed of colloidal particles. Science 298:1006–1009

    Article  CAS  Google Scholar 

  11. Simovic S, Prestidge CA (2007) Nanoparticle layers controlling drug release from emulsions. Eur J Pharm Biopharm 67:39–47

    Article  CAS  Google Scholar 

  12. Menner A, Ikem V, Salgueiro M, Shaffer MSP, Bismarck A (2007) High internal phase emulsion templates solely stabilised by functionalised titania nanoparticles. Chem Commun 41:4274–4276

    Article  Google Scholar 

  13. Binks BP (2002) Macroporous silica from solid-stabilized emulsion templates. Adv Mater 14:1824–1827

    Article  CAS  Google Scholar 

  14. Biswas S, Drzal LT (2009) A novel approach to create a highly ordered monolayer film of graphene nanosheets at the liquid-liquid interface. Nano Lett 9:167–172

    Article  CAS  Google Scholar 

  15. Binks BP, Rodrigues JA (2007) Double inversion of emulsions by using nanoparticles and a di-chain surfactant. Angew Chem Int Ed 46:5389–5392

    Article  CAS  Google Scholar 

  16. Binks BP, Whitby CP (2004) Silica particle-stabilized emulsions of silicone oil and water: aspects of emulsification. Langmuir 20:1130–1137

    Article  CAS  Google Scholar 

  17. Binks BP, Rodrigues JA (2007) Synergistic interaction in emulsions stabilized by a mixture of silica nanoparticles and cationic surfactant. Langmuir 23:3626–3636

    Article  CAS  Google Scholar 

  18. Binks BP, Rodrigues JA (2007) Enhanced stabilization of emulsions due to surfactant-induced nanoparticle flocculation. Langmuir 23:7436–7439

    Article  CAS  Google Scholar 

  19. Duan H, Wang D, Sobal NS, Giersig M, Kurth DG, Möhwald H (2005) Magnetic colloidosomes derived from nanoparticle interfacial self-assembly. Nano Lett 5:949–952

    Article  CAS  Google Scholar 

  20. Kim B, Tripp SL, Wei A (2001) Self-organization of large gold nanoparticle arrays. J Am Chem Soc 123:7955–7956

    Article  CAS  Google Scholar 

  21. Duan H, Wang D, Kurth DG, Möhwald H (2004) Directing self-assembly of nanoparticles at water/oil interfaces. Angew Chem Int Ed 43:5639–5642

    Article  CAS  Google Scholar 

  22. Li Y, Huang W, Sun S (2006) A universal approach for the self-assembly of hydrophilic nanoparticles into ordered monolayer films at a toluene/water interface. Angew Chem Int Ed 45:2537–2539

    Article  CAS  Google Scholar 

  23. He J, Zhang Q, Gupta S, Emrick T, Russell TP, Thiyagarajan P (2007) Drying droplets: a window into the behavior of nanorods at interfaces. Small 3:1214–1217

    Article  CAS  Google Scholar 

  24. Cheng JL, He JP, Li CC, Yang YL (2008) Facile approach to functionalize nanodiamond particles with V-shaped polymer brushes. Chem Mater 20:4224–4230

    Article  CAS  Google Scholar 

  25. Binks BP, Ashby NP (2000) Pickering emulsions stabilised by Laponite clay particles. Phys Chem Chem Phys 2:5640–5646

    Article  Google Scholar 

  26. Amalvy JI, Armes SP, Binks BP, Rodrigues JA, Unali GF (2003) Use of sterically-stabilised polystyrene latex particles as a pH-responsive particulate emulsifier to prepare surfactant-free oil-in-water emulsions. Chem Commun 15:1826–1827

    Article  Google Scholar 

  27. Binks BP, Rodrigues JA (2005) Inversion of emulsions stabilized solely by ionizable nanoparticles. Angew Chem Int Ed 44:441–444

    Article  CAS  Google Scholar 

  28. Binks BP, Murakami R, Armes SP, Fujii S (2005) Temperature-induced inversion of nanoparticle-stabilized emulsions. Angew Chem Int Ed 44:4795–4798

    Article  CAS  Google Scholar 

  29. Binks BP, Rocher A (2009) Effects of temperature on water-in-oil emulsions stabilised solely by wax microparticles. J Colloid Interface Sci 335:94–104

    Article  CAS  Google Scholar 

  30. He J, Niu Z, Tangirala R, Wang J, Wei X, Kaur G, Wang Q, Jutz G, Boker A, Lee B, Pingali SV, Thiyagarajan P, Emrick T, Russell TP (2009) Self-assembly of tobacco mosaic virus at oil/water interfaces. Langmuir 25:4979–4987

    Article  CAS  Google Scholar 

  31. Binks BP, Clint JH (2002) Solid wettability from surface energy components: relevance to Pickering emulsions. Langmuir 18:1270–1273

    Article  CAS  Google Scholar 

  32. Binks BP, Lumsdon SO (2000) Effects of oil type and aqueous phase composition on oil–water mixtures containing particles of intermediate hydrophobicity. Phys Chem Chem Phys 2:2959–2967

    Article  CAS  Google Scholar 

  33. Barbey R, Lavanant L, Paripovic D, Schüwer N, Sugnaux C, Tugulu S, Klok HA (2009) Polymer brushes via surface-initiated controlled radical polymerization: synthesis, characterization, properties, and applications. Chem Rev 109:5437–5527

    Article  CAS  Google Scholar 

  34. Zhao B, Brittain WJ (2000) Polymer brushes: surface-immobilized macromolecules. Prog Polym Sci 25:677–710

    Article  CAS  Google Scholar 

  35. Zhao B, Zhu L (2009) Mixed polymer brush-grafted particles: a new class of environmentally responsive nanostructured materials. Macromolecules 42:9369–9383

    Article  CAS  Google Scholar 

  36. Mansky P, Liu Y, Huang E, Russell TP, Hawker C (1997) Controlling polymer–surface interactions with random copolymer brushes. Science 275:1458–1460

    Article  CAS  Google Scholar 

  37. Wuelfing WP, Gross SM, Miles DT, Murray RW (1998) Nanometer gold clusters protected by surface-bound monolayers of thiolated poly(ethylene glycol) polymer electrolyte. J Am Chem Soc 120:12696–12697

    Article  CAS  Google Scholar 

  38. Corbierre MK, Cameron NS, Lennox RB (2004) Polymer-stabilized gold nanoparticles with high grafting densities. Langmuir 20:2867–2873

    Article  CAS  Google Scholar 

  39. Hong CY, You YZ, Wu DC, Liu Y, Pan CY (2005) Multiwalled carbon nanotubes grafted with hyperbranched polymer shell via SCVP. Macromolecules 38:2606–2611

    Article  CAS  Google Scholar 

  40. Li X, Hong C, Pan C (2010) Preparation and characterization of hyperbranched polymer grafted mesoporous silica nanoparticles via self-condensing atom transfer radical vinyl polymerization. Polymer 51:92–99

    Article  CAS  Google Scholar 

  41. Li D, Sheng X, Zhao B (2005) Environmentally responsive “hairy” nanoparticles: mixed homopolymer brushes on silica nanoparticles synthesized by living radical polymerization techniques. J Am Chem Soc 127:6248–6256

    Article  CAS  Google Scholar 

  42. Tang P, Qiu F, Zhang HD, Yang YL (2005) Phase separation patterns for diblock copolymers on spherical surfaces: a finite volume method. Phys Rev E 72:016710

    Article  Google Scholar 

  43. Li JF, Fan J, Zhang HD, Qiu F, Tang P, Yang YL (2006) Self-assembled pattern formation of block copolymers on the surface of the sphere using self-consistent field theory. Eur Phys J E 20:449–457

    Article  CAS  Google Scholar 

  44. Shan J, Chen J, Nuopponen M, Viitala T, Jiang H, Peltonen J, Kauppinen E, Tenhu H (2006) Optical properties of thermally responsive amphiphilic gold nanoparticles protected with polymers. Langmuir 2:794–801

    Article  Google Scholar 

  45. Zubarev ER, Xu J, Sayyad A, Gibson JD (2006) Amphiphilicity-driven organization of nanoparticles into discrete assemblies. J Am Chem Soc 128:15098–15099

    Article  CAS  Google Scholar 

  46. Motornov M, Sheparovych R, Lupitskyy R, MacWilliams E, Hoy O, Luzinov I, Minko S (2007) Stimuli-responsive colloidal systems from mixed brush-coated nanoparticles. Adv Funct Mater 17:2307–2314

    Article  CAS  Google Scholar 

  47. Ragosta G, Abbate M, Musto P, Scarinzi G, Mascia L (2005) Epoxy–silica particulate nanocomposites: chemical interactions, reinforcement and fracture toughness. Polymer 46:10506–10516

    Article  CAS  Google Scholar 

  48. Wu D, Qin J, Lin B (2007) Self-assembled epoxy-modified polymer coating on a poly(dimethylsiloxane) microchip for EOF inhibition and biopolymers separation. Lab Chip 7:1490–1496

    Article  CAS  Google Scholar 

  49. Liu H, Zheng S, Nie K (2005) Morphology and thermomechanical properties of organic–inorganic hybrid composites involving epoxy resin and an incompletely condensed polyhedral oligomeric silsesquioxane. Macromolecules 38:5088–5097

    Article  CAS  Google Scholar 

  50. Reddy CS, Das CK (2006) Polypropylene–nanosilica-filled composites: effects of epoxy-resin-grafted nanosilica on the structural, thermal, and dynamic mechanical properties. J Appl Polym Sci 102:2117–2124

    Article  CAS  Google Scholar 

  51. Le TPT, Moad G, Rizzardo E, Thang S (1998) Polymerization with living characteristics. H PCT Int Pat Appl WO 98/01478 A1 980115

  52. Liu CH, Pan CY (2007) Grafting polystyrene onto silica nanoparticles via RAFT polymerization. Polymer 48:3679–3685

    Article  CAS  Google Scholar 

  53. Stöber W, Fink A (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69

    Article  Google Scholar 

  54. Bogush GH, Tracy MA, Zukoski CFJ (1988) Preparation of monodisperse silica particles: control of size and mass fraction. Non-Cryst Solids 104:95–106

    Article  CAS  Google Scholar 

  55. Mauritz KA, Warren RM (1989) Microstructural evolution of a silicon oxide phase in a perfluorosulfonic acid ionomer by an in situ sol–gel reaction. 1. Infrared spectroscopic studies. Macromolecules 22:1730–1734

    Article  CAS  Google Scholar 

  56. Galeener FL, Lucovsky G (1976) Longitudinal optical vibrations in glasses: GeO2 and SiO2. Phys Rev Lett 37:1474–1478

    Article  CAS  Google Scholar 

  57. Galeener FL (1979) Band limits and the vibrational spectra of tetrahedral glasses. Phys Rev B 19:4292–4297

    Article  CAS  Google Scholar 

  58. Mondragón MA, Castaño VM, Garcia MJ, Téllez SCA (1995) Vibrational analysis of Si(OC2H5)4 and spectroscopic studies on the formation of glasses via silica gels. Vib Spectrosc 9:293–304

    Article  Google Scholar 

  59. Kang S, Hong S, Choe CR, Park M, Rim S, Kim J (2001) Preparation and characterization of epoxy composites filled with functionalized nanosilica particles obtained via sol–gel process. Polymer 42:879–887

    Article  CAS  Google Scholar 

  60. Hench LL, West JK (1990) The sol–gel process. Chem Rev 90:33–72

    Article  CAS  Google Scholar 

  61. Pyun J, Jia S, Kowalewski T, Patterson GD, Matyjaszewski K (2003) Synthesis and characterization of organic/inorganic hybrid nanoparticles: kinetics of surface-initiated atom transfer radical polymerization and morphology of hybrid nanoparticle ultrathin films. Macromolecule 36:5094–5104

    Article  CAS  Google Scholar 

  62. Binks BP, Kirkland M (2002) Interfacial structure of solid-stabilised emulsions studied by scanning electron microscopy. Phys Chem Chem Phys 4:3727–3733

    Article  CAS  Google Scholar 

  63. Vignati E, Piazza R (2003) Ellipsometric study of monodisperse silica particles at an oil–water interface. Langmuir 19:6650–8893

    Article  CAS  Google Scholar 

  64. Binks BP, Horozov TS (2006) Particle-stabilized emulsions: a bilayer or a bridging monolayer. Angew Chem Int Ed 45:773–776

    Article  Google Scholar 

Download references

Acknowledgment

This work is subsidized by the National High Technology Research and Development Program of China (2008AA032102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junpo He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Fan, D., He, J. et al. Silica nanoparticle covered with mixed polymer brushes as Janus particles at water/oil interface. Colloid Polym Sci 289, 1885–1894 (2011). https://doi.org/10.1007/s00396-011-2506-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-011-2506-9

Keywords

Navigation