Skip to main content
Log in

One-step grafting reaction of thermoresponsive polymer brushes over silica nanoparticles

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Hybrid nanomaterials were synthesized via grafting poly(N-isopropylacrylamide) (PNIPAM) over silica nanoparticles in a one-pot reaction using the internal and external surface of the nanoparticles as a microreactor system. Silica nanoparticle properties were tuned through templating and pore-swelling agents which allows obtaining spherical and elongated morphologies. Polymerization reactions were carried out at 80 °C for 4 h, using two initiator systems and N,N′-methylenebisacrylamide as a cross-linker. The structures obtained were studied by SEM and TEM micrographs, and the presence of polymer was confirmed through 1HNMR and FTIR analysis. The thermoresponsive behavior was analyzed by DLS and DSC. It was found that the silica core structure and the initiator solubility affect considerably the aggregation and the size distribution of the grafted nanoparticles. Therefore, it is observed that different parameters can be used to drive grafting reactions without any previous functionalization step on the core surface, showing a straightforward method for their production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. Liang R, Fang X, Qiu B, Zou H (2020) One-step synthesis of golf ball-like thiol-functionalized silica particles. Soft Matter 16:9113–9120. https://doi.org/10.1039/d0sm01214a

    Article  CAS  Google Scholar 

  2. Baliś A, Wolski K, Zapotoczny S (2020) Thermoresponsive polymer gating system on mesoporous shells of silica particles serving as smart nanocontainers. Polymers (Basel) 12. https://doi.org/10.3390/POLYM12040888

  3. Paris JL, Cabañas MV, Manzano M, Vallet-Regí M (2015) Polymer-grafted mesoporous silica nanoparticles as ultrasound-responsive drug carriers. ACS Nano 9:11023–11033. https://doi.org/10.1021/acsnano.5b04378

    Article  CAS  PubMed  Google Scholar 

  4. Mishra S, Hook JM, Nebhani L (2019) Priming the pores of mesoporous silica nanoparticles with an in-built RAFT agent for anchoring a thermally responsive polymer. Microporous Mesoporous Mater 277:60–69. https://doi.org/10.1016/j.micromeso.2018.10.012

    Article  CAS  Google Scholar 

  5. Wang S, Wang Z, Li J, Li L, Hu W (2020) Surface-grafting polymers: from chemistry to organic electronics. Mater Chem Front 4:692–714. https://doi.org/10.1039/c9qm00450e

    Article  CAS  Google Scholar 

  6. Zou H, Schlaad H (2015) Thermoresponsive PNIPAM/silica nanoparticles by direct photopolymerization in aqueous media. J Polym Sci Part A Polym Chem 53:1260–1267. https://doi.org/10.1002/pola.27593

  7. Sidoli U, Tee HT, Raguzin I, Mühldorfer J, Wurm FR, Synytska A (2019) Thermo-responsive polymer brushes with side graft chains: relationship between molecular architecture and underwater adherence. Int J Mol Sci 20. https://doi.org/10.3390/ijms20246295

  8. Sudre G, Siband E, Gallas B, Cousin F, Hourdet D, Tran Y (2020) Responsive adsorption of N-isopropylacrylamide based copolymers on polymer brushes. Polymers (Basel) 12. https://doi.org/10.3390/polym12010153.

  9. Macchione MA, Biglione C, Strumia M (2018) Design, synthesis and architectures of hybrid nanomaterials for therapy and diagnosis applications. Polymers (Basel) 10:1–34. https://doi.org/10.3390/polym10050527

    Article  CAS  Google Scholar 

  10. Yan J, Bockstaller MR, Matyjaszewski K (2020) Brush-modified materials: control of molecular architecture, assembly behavior, properties and applications. Prog Polym Sci 100:101180. https://doi.org/10.1016/j.progpolymsci.2019.101180

    Article  CAS  Google Scholar 

  11. Zhao F, Yao D, Guo R, Deng L, Dong A, Zhang J (2015) Composites of polymer hydrogels and nanoparticulate systems for biomedical and pharmaceutical applications. Nanomaterials 5:2054–2130. https://doi.org/10.3390/nano5042054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen X, Yuan P, Liu Z, Bai Y, Zhou Y (2017) Dual responsive hydrogels based on functionalized mesoporous silica nanoparticles as an injectable platform for tumor therapy and tissue regeneration. J Mater Chem B 5:5968–5973. https://doi.org/10.1039/c7tb01225j

    Article  CAS  PubMed  Google Scholar 

  13. Chen X, Liu Z (2016) A pH-responsive hydrogel based on a tumor-targeting mesoporous silica nanocomposite for sustained cancer labeling and therapy. Macromol Rapid Commun 37:1533–1539. https://doi.org/10.1002/marc.201600261

    Article  CAS  PubMed  Google Scholar 

  14. Thoniyot P, Tan MJ, Karim AA, Young DJ, Loh XJ (2015) Nanoparticle – hydrogel composites: concept, design and applications of these promising, multi-functional materials 1–13. https://doi.org/10.1002/advs.201400010

  15. Deirram N, Zhang C, Kermaniyan SS, Johnston APR, Such GK (2019) pH-responsive polymer nanoparticles for drug delivery. Macromol Rapid Commun 40:1–23. https://doi.org/10.1002/marc.201800917

    Article  CAS  Google Scholar 

  16. Bruneau M, Bennici S, Brendle J, Dutournie P, Limousy L, Pluchon S (2019) Systems for stimuli-controlled release: materials and applications. J Control Release 294:355–371. https://doi.org/10.1016/j.jconrel.2018.12.038

    Article  CAS  PubMed  Google Scholar 

  17. Jadhav SA, Nisticò R, Magnacca G, Scalarone D (2018) Packed hybrid silica nanoparticles as sorbents with thermo-switchable surface chemistry and pore size for fast extraction of environmental pollutants. RSC Adv 8:1246–1254. https://doi.org/10.1039/c7ra11869d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Feng Z, Zhu Y, Ni C (2012) Preparation of composites of silica/PNIPAm by coupling reaction and their application in HPLC. Int J Polym Anal Charact 17:61–71. https://doi.org/10.1080/1023666X.2012.638745

    Article  CAS  Google Scholar 

  19. Li M, Pester CW (2020) Mixed polymer brushes for “smart” surfaces. Polymers (Basel) 12:1–28. https://doi.org/10.3390/polym12071553

    Article  CAS  Google Scholar 

  20. Quoika PK, Podewitz M, Wang Y, Kamenik AS, Loeffler JR, Liedl KR (2020) Thermosensitive hydration of four acrylamide-based polymers in coil and globule conformations. J Phys Chem B 124:9745–9756. https://doi.org/10.1021/acs.jpcb.0c07232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tavagnacco L, Chiessi E, Zaccarelli E (2021) Molecular insights on poly( N -isopropylacrylamide) coil-to-globule transition induced by pressure. Phys Chem Chem Phys. https://doi.org/10.1039/D0CP06452A

    Article  PubMed  PubMed Central  Google Scholar 

  22. Najafi M, Hebels E, Hennink WE, Vermonden T (2018) Poly( N -isopropylacrylamide): physicochemical properties and biomedical applications. In Temperature-responsive polymers; John Wiley & Sons Ltd: Chichester, UK pp 1–34

  23. Wu TY, Zrimsek AB, Bykov SV, Jakubek RS, Asher SA (2018) Hydrophobic collapse initiates the poly(N -isopropylacrylamide) volume phase transition reaction coordinate. J Phys Chem B 122:3008–3014. https://doi.org/10.1021/acs.jpcb.8b00740

    Article  CAS  PubMed  Google Scholar 

  24. Wu T, Zhang Y, Wang X, Liu S (2008) Fabrication of hybrid silica nanoparticles densely grafted with thermoresponsive poly(N-isopropylacrylamide) brushes of controlled thickness via surface-initiated atom transfer radical polymerization. Chem Mater 20:101–109. https://doi.org/10.1021/cm702073f

    Article  CAS  Google Scholar 

  25. Varma S, Bureau L, Débarre D (2016) The conformation of thermoresponsive polymer brushes probed by optical reflectivity. Langmuir 32:3152–3163. https://doi.org/10.1021/acs.langmuir.6b00138

    Article  CAS  PubMed  Google Scholar 

  26. Van Duinen D, Butt HJ, Berger R (2019) Two-stage collapse of PNIPAM brushes: viscoelastic changes revealed by an interferometric laser technique. Langmuir. https://doi.org/10.1021/acs.langmuir.9b03205

    Article  PubMed  PubMed Central  Google Scholar 

  27. Manav M, Ponga M, Phani AS (2021) Stress in a stimuli-responsive polymer brush. Macromolecules 54:170–182. https://doi.org/10.1021/acs.macromol.0c01783

    Article  CAS  Google Scholar 

  28. Manav M, Anilkumar P, Phani AS (2018) Mechanics of polymer brush based soft active materials– theory and experiments. J Mech Phys Solids 121:296–312. https://doi.org/10.1016/j.jmps.2018.06.021

    Article  CAS  Google Scholar 

  29. Chen J, Liu M, Chen C, Gong H, Gao C (2011) Synthesis and characterization of silica nanoparticles with well-defined thermoresponsive PNIPAM via a combination of RAFT and click chemistry. ACS Appl Mater Interfaces 3:3215–3223. https://doi.org/10.1021/am2007189

    Article  CAS  PubMed  Google Scholar 

  30. Zoppe JO, Ataman NC, Mocny P, Wang J, Moraes J, Klok HA (2017) Surface-initiated controlled radical polymerization: state-of-the-art, opportunities, and challenges in surface and interface engineering with polymer brushes. Chem Rev 117:1105–1318. https://doi.org/10.1021/acs.chemrev.6b00314

    Article  CAS  PubMed  Google Scholar 

  31. Kim M, Schmitt SK, Choi JW, Krutty JD, Gopalan P (2015) From self-assembled monolayers to coatings: advances in the synthesis and nanobio applications of polymer brushes. Polymers (Basel) 7:1346–1378. https://doi.org/10.3390/polym7071346

    Article  CAS  Google Scholar 

  32. Jadhav SA, Miletto I, Brunella V, Berlier G, Scalarone D (2015) Controlled post-synthesis grafting of thermoresponsive poly(N-isopropylacrylamide) on mesoporous silica nanoparticles. Polym Adv Technol 26:1070–1075. https://doi.org/10.1002/pat.3534

    Article  CAS  Google Scholar 

  33. Jadhav SA, Scalarone D (2018) Thermoresponsive polymer grafted porous silicas as smart nanocarriers. Aust J Chem 71:477–481. https://doi.org/10.1071/CH18229

    Article  CAS  Google Scholar 

  34. Jadhav SA, Brunella V, Scalarone D, Berlier G (2017) Poly(NIPAM-co-MPS)-grafted multimodal porous silica nanoparticles as reverse thermoresponsive drug delivery system. Asian J Pharm Sci 12:279–284. https://doi.org/10.1016/j.ajps.2017.02.002

    Article  PubMed  PubMed Central  Google Scholar 

  35. Schmitt J, Hartwig C, Crassous JJ, Mihut AM, Schurtenberger P, Alfredsson V (2020) Anisotropic mesoporous silica/microgel core-shell responsive particles. RSC Adv 10:25393–25401. https://doi.org/10.1039/d0ra02278k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang Z, Wang S, Waterhouse GIN, Zhang Q, Li L (2020) Poly(N-isopropylacrylamide)/mesoporous silica thermosensitive composite hydrogels for drug loading and release. J Appl Polym Sci 137:1–9. https://doi.org/10.1002/app.48391

    Article  CAS  Google Scholar 

  37. Ohno K, Mizuta Y (2020) Structural color materials using polymer-brush-decorated hybrid particles. ACS Appl Polym Mater 2:368–375. https://doi.org/10.1021/acsapm.9b00839

    Article  CAS  Google Scholar 

  38. Jadhav SA, Brunella V, Miletto I, Berlier G, Scalarone D (2016) Synthesis of poly(N-isopropylacrylamide) by distillation precipitation polymerization and quantitative grafting on mesoporous silica. J Appl Polym Sci 133:1–8. https://doi.org/10.1002/app.44181

    Article  CAS  Google Scholar 

  39. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  40. Möller K, Bein T (2017) Talented mesoporous silica nanoparticles. Chem Mater 29:371–388. https://doi.org/10.1021/acs.chemmater.6b03629

    Article  CAS  Google Scholar 

  41. Prescott SW, Gresham IJ, Humphreys BA, Willott JD, Johnson EC, Murdoch TJ, Webber GB, Wanless EJ, Nelson ARJ (2021) Geometrical confinement modulates the thermoresponse of a poly(n-isopropylacrylamide) brush. Macromolecules. https://doi.org/10.1021/acs.macromol.0c02775

    Article  Google Scholar 

  42. Murdoch TJ, Humphreys BA, Johnson EC, Webber GB, Wanless EJ (2018) Specific ion effects on thermoresponsive polymer brushes: comparison to other architectures. J Colloid Interface Sci 526:429–450. https://doi.org/10.1016/j.jcis.2018.04.086

    Article  CAS  PubMed  Google Scholar 

  43. Gleria I, Mocskos E, Tagliazucchi M (2017) Minimum free-energy paths for the self-organization of polymer brushes. Soft Matter 13:2362–2370. https://doi.org/10.1039/c6sm02725c

    Article  CAS  PubMed  Google Scholar 

  44. Chauhan GS, Chauhan S (2008) Synthesis, characterization, and swelling studies of pH- and thermosensitive hydrogels for specialty applications. J Appl Polym Sci 109:47–55. https://doi.org/10.1002/app.28011

    Article  CAS  Google Scholar 

  45. Jin J, Zhang M, Xiong Q, Sun P, Zhao H (2012) Interface cross-linked polymeric micelles with mixed coronal chains prepared by RAFT polymerization at the interface. Soft Matter 8:11809–11816. https://doi.org/10.1039/c2sm26362a

    Article  CAS  Google Scholar 

  46. Kesim H, Rzaev ZM, Dinçer S, Pişkin E (2003) Functional bioengineering copolymers. II. Synthesis and characterization of amphiphilic poly(N-isopropyl acrylamide-co-maleic anhydride) and its macrobranched derivatives. Polymer (Guildf) 44:2897–2909. https://doi.org/10.1016/S0032-3861(03)00177-0

  47. Coronado R, Pekerar S, Lorenzo AT, Sabino MA (2011) Characterization of thermo-sensitive hydrogels based on poly(N-isopropylacrylamide)/hyaluronic acid. Polym Bull 67:101–124. https://doi.org/10.1007/s00289-010-0407-6

    Article  CAS  Google Scholar 

  48. Zarzyka I, Pyda M, Di Lorenzo ML (2014) Influence of crosslinker and ionic comonomer concentration on glass transition and demixing/mixing transition of copolymers poly(N- isopropylacrylamide) and poly(sodium acrylate) hydrogels. Colloid Polym Sci 292:485–492. https://doi.org/10.1007/s00396-013-3092-9

    Article  CAS  PubMed  Google Scholar 

  49. Seddiki N, Aliouche D (2013) Synthesis, rheological behavior and swelling properties of copolymer hydrogels based on poly(n-isopropylacrylamide) with hydrophilic monomers. Bull Chem Soc Ethiop 27:447–457. https://doi.org/10.4314/bcse.v27i3.14

    Article  CAS  Google Scholar 

  50. Shinde VS, Pawar V (2011) Thermoresponsive polystyrene- b -poly ( N -isopropylacrylamide ) copolymers by atom transfer radical polymerization. Indian J Chem 50A:781–787

    CAS  Google Scholar 

  51. Qiao ZA, Zhang L, Guo M, Liu Y, Huo Q (2009) Synthesis of mesoporous silica nanoparticles via controlled hydrolysis and condensation of silicon alkoxide. Chem Mater 21:3823–3829. https://doi.org/10.1021/cm901335k

    Article  CAS  Google Scholar 

  52. Narayan R, Nayak UY, Raichur AM, Garg S (2018) Mesoporous silica nanoparticles: a comprehensive review on synthesis and recent advances. Pharmaceutics 10:1–49. https://doi.org/10.3390/pharmaceutics10030118

    Article  CAS  Google Scholar 

  53. Guo Z, Wu L, Wang Y, Zhu Y, Wan G, Li R, Zhang Y, Qian D, Wang Y, Zhou X et al (2020) Design of dendritic large-pore mesoporous silica nanoparticles with controlled structure and formation mechanism in dual-templating strategy. ACS Appl Mater Interfaces 12:18823–18832. https://doi.org/10.1021/acsami.0c00596

    Article  CAS  PubMed  Google Scholar 

  54. Mohamed Isa ED, Abdul Rahman MB, Ahmad H (2018) Monodispersed mesoporous silica nanospheres based on pyridinium ionic liquids. J Porous Mater 25:1439–1446. https://doi.org/10.1007/s10934-018-0556-9

    Article  CAS  Google Scholar 

  55. Lv X, Zhang L, Xing F, Lin H (2016) Controlled synthesis of monodispersed mesoporous silica nanoparticles: particle size tuning and formation mechanism investigation. Microporous Mesoporous Mater 225:238–244. https://doi.org/10.1016/j.micromeso.2015.12.024

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Chemical Engineering School of Tianjin University and the students of professor Xing’s group for the support provided to develop this research.

Funding

The authors thank the support of the National Natural Science Foundation of China (31771094) and Tianjin Science and Technology Innovation Platform Program (14TXGCCX00017).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors.

Corresponding author

Correspondence to Jhair Andres Peña.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1887 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peña, J.A., Du, X.J. & Xing, J.F. One-step grafting reaction of thermoresponsive polymer brushes over silica nanoparticles. Colloid Polym Sci 300, 1087–1099 (2022). https://doi.org/10.1007/s00396-022-05012-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-022-05012-x

Keywords

Navigation