Skip to main content
Log in

Synthesis and characterization of PVA ferrogels obtained through a one-pot freezing–thawing procedure

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Polyvinyl alcohol (PVA) ferrogels were easily obtained through a one-pot technique that involves co-precipitation of iron salts in the presence of a PVA solution, followed by freezing–thawing cycles of the resulting nanoparticles (NPs) dispersions. The protecting effect of PVA enabled the synthesis of small magnetic NPs that did not agglomerate in the initial solution allowing the synthesis of well-dispersed ferrogels by physical cross-linking. Physical properties of the physically cross-linked ferrogels, as swelling ability, melting temperature, and crystallinity, were barely affected by the presence of NPs, presenting similar or improved values when compared with chemically cross-linked systems. Ferrogels showed superparamagnetic properties at room temperature that combined with the absence of toxic residues arising from cross-linking agents make them ideal candidates for their use in biomedical applications (artificial muscles, drug delivery, and sensors among others).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Osada Y, Gong JP, Tanaka YJ (2004) Polymer gels 1. J Macromol Sci Polymer Rev C44:87–112. doi:10.1081/MC-120027935

    Article  CAS  Google Scholar 

  2. Sonmez HB, Wudl F (2005) Cross-linked poly(orthocarbonate)s as organic solvent sorbents. Macromolecules 38:1623–1626. doi:10.1021/ma048731x

    Article  CAS  Google Scholar 

  3. Jilie K, Li M (2008) Smart polymers. Applications in biotechnology and biomedicine. In: Galaev I, Mattiasson B (eds) Smart hydrogels. CRC Press, Boca Raton. ISBN 13:978-0-8493-9161-3

    Google Scholar 

  4. Kato T, Hirai Y, Nakaso S, Moriyama M (2007) Liquid-crystalline physical gels. Chem Soc Rev 36:1857–1867

    Article  CAS  Google Scholar 

  5. Feldgitscher C, Peterlik H, Puchberger M, Kickelbick G (2009) Structural investigations on hybrid polymers suitable as a nanoparticle precipitation environment. Chem Mater 21:695–705. doi:10.1021/cm802171s

    Article  CAS  Google Scholar 

  6. Schexnailder P, Schmidt G (2009) Nanocomposite polymer hydrogels. Colloid Polym Sci 287:1–11. doi:10.1007/s00396-008-1949-0

    Article  CAS  Google Scholar 

  7. Filipcsei G, Csetneki I, Szilágyi A, Zrínyi M (2007) Magnetic field-responsive smart polymer composites. Adv Polym Sci 206:137–189

    Article  CAS  Google Scholar 

  8. Schewertmann U, Cornell RM (1991) Iron oxides in the laboratory: preparation and characterization. VCH, Weinheim

    Google Scholar 

  9. Samba Sivudu K, Rhee KY (2009) Preparation and characterization of pH-responsive hydrogel magnetite nanocomposite. Colloid Surface Physicochem Eng Aspect 349:29–34. doi:10.1016/j.colsurfa.2009.07.048

    Article  Google Scholar 

  10. Liu Z, Liu Y, Yang H, Yang Y, Shen G, Yu R (2005) A phenol biosensor based on immobilizing tyrosinase to modified core-shell magnetic nanoparticles supported at a carbon paste electrode. Anal Chim Acta 533(1):3–9. doi:10.1016/j.aca.2004.10.077

    Article  CAS  Google Scholar 

  11. Mao L, Hu Y, Piao Y, Chen X, Xian W, Piao D (2005) Structure and character of artificial muscle model constructed from fibrous hydrogel. Curr Appl Phys 5(5):426–428. doi:10.1016/j.cap.2004.11.003

    Article  Google Scholar 

  12. Paradossi G, Cavalieri F, Chiessi E, Spagnoli C, Cowman MK (2003) Poly(vinyl alcohol) as versatile biomaterial for potential biomedical applications. J Mater Sci Mater Med 14:687. doi:10.1023/A:1024907615244

    Article  CAS  Google Scholar 

  13. Matejka L, Dukh O, Meissner B, Hlavatá D, Brus J, Strachota A (2003) Block copolymer organic–inorganic networks. Formation and structure ordering. Macromolecules 36:7977–7985. doi:10.1021/ma034234p

    Article  CAS  Google Scholar 

  14. Hu SH, Liu TY, Liu DM, Chen SY (2007) Controlled pulsatile drug release from a ferrogel by a high-frequency magnetic field. Macromolecules 40(19):6786–6788. doi:10.1021/ma0707584

    Article  CAS  Google Scholar 

  15. Satarkar N, Zach Hilt J (2008) Magnetic hydrogel nanocomposites for remote controlled pulsatile drug release. J Control Release 130:246–251. doi:10.1016/j.jconrel.2008.06

    Article  CAS  Google Scholar 

  16. Liu TY, Hu SH, Liu TY, Liu DM, Chen SY (2006) Magnetic-sensitive behavior of intelligent ferrogels for controlled release of drug. Langmuir 22(14):5974–5978. doi:10.1021/la060371e

    Article  CAS  Google Scholar 

  17. Qiu X-P, Winnik F (2000) Preparation and characterization of PVA coated magnetic nanoparticles. Chin J Polym Sci 18(6):535–539

    CAS  Google Scholar 

  18. Lin H, Watanabe Y, Kimura M, Hanabusa K, Shirai H (2003) Preparation of magnetic poly(vinyl alcohol) (PVA) materials by in situ synthesis of magnetite in a PVA matrix. J Appl Polym Sci 87(8):1239–1247. doi:10.1002/app.11520

    Article  CAS  Google Scholar 

  19. Vacile C, Kulshshreshta AK (2003) Handbook of polymer blends and composites, vol 4. Rapra Technology Ltd., Shrewsbury

    Google Scholar 

  20. Matsuyama H, Teramoto M, Urano H (1997) Analysis of solute diffusion in poly(vinyl alcohol) hydrogel membrane. J Membr Sci 126:151–160. doi:10.1016/S0376-7388(96)00287-6

    Article  CAS  Google Scholar 

  21. Hill DJT, Whittaker AK et al (2011) Water diffusion into radiation crosslinked PVA–PVP network hydrogels. Radiat Phys Chem 80:213–218. doi:10.1016/j.radphyschem.2010.07.035

    Article  CAS  Google Scholar 

  22. Peppas NA, Mongia NK (1997) Ultrapure poly(vinyl alcohol) hydrogels with mucoadhesive drug delivery characteristics. Eur J Pharm Biopharm 43:51–58

    Article  CAS  Google Scholar 

  23. Griffith Cima L, Lopina ST (1995) Network structures of radiation-cross-linked star polymer gels. Macromolecules 28:6787–6794. doi:10.1021/ma00124a013

    Article  Google Scholar 

  24. Mahmoudi M, Simchi A, Imani M, Stroeve P, Sohrabi A (2010) Templated growth of superparamagnetic iron oxide nanoparticles by temperature programming in the presence of poly(vinyl alcohol). Thin Solid Films 518:4281–4289

    Article  CAS  Google Scholar 

  25. Hassan CM, Peppas NA (2000) Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Adv Polym Sci 153:37–65

    Article  CAS  Google Scholar 

  26. Willcox PJ, Howie DW Jr, Schmidt-Rohr K, Hoagland DA, Gido SP, Pudjianto S et al (1999) Microstructure of poly(vinyl alcohol) hydrogels produced by freeze/thaw cycling. J Polymer Sci B Polymer Phys 37:3438–3454. doi:10.1002/(SICI)1099-0488(19991215)37:2

    Article  CAS  Google Scholar 

  27. Yang X, Liu Q, Chen X, Zhu Z (2008) Investigation on the formation mechanisms of hydrogels made by combination of γ-ray irradiation and freeze–thawing. J Appl Polym Sci 108:1365. doi:10.1002/app.27832

    Article  CAS  Google Scholar 

  28. López D, Cendoya I, Torres F, Tejada J, Mijangos C (2001) Preparation and characterization of poly(vinyl alcohol) based magnetic nanocomposites. 1. Thermal and mechanical properties. J Appl Polym Sci 82:3215–3222. doi:10.1002/app.2180

    Article  Google Scholar 

  29. Szabó D, Czakó-Nagy I, Zrínyi M, Vértes AJ (2000) Magnetic and Mössbauer studies of magnetite-loaded polyvinyl alcohol hydrogels. J Colloid Interface Sci 221:166–172. doi:10.1006/jcis.1999.6572

    Article  Google Scholar 

  30. Bertoglio P, Jacobo SE, Daraio ME (2010) Preparation and characterization of PVA films with magnetic nanoparticles: the effect of particle loading on drug release behavior. J Appl Polym Sci 115:1859–1865. doi:10.1002/app.31315

    Article  CAS  Google Scholar 

  31. Resendiz-Hernandez PJ, Rodriguez-Fernandez OS, Garcia-Cerda LA (2008) Synthesis of poly(vinyl alcohol) magnetite ferrogel obtained by freezing thawing technique. J Magn Magn Mater 320:e373–e376. doi:10.1016/j.jmmm.2008.02.073

    Article  CAS  Google Scholar 

  32. Theppaleak T, Tumcharern G, Wichai U, Rutnakornpituk M (2009) Synthesis of water dispersible magnetite nanoparticles in the presence of hydrophilic polymers. Polym Bull 63:79–90. doi:10.1007/s00289-009-0075-6

    Article  CAS  Google Scholar 

  33. Gonzalez JS, Alvarez VA (2011) In: Wythers MC (ed) Advances in materials science research, vol 10. Nova, Commack, pp 265–285. ISBN 978-1-61324-511-8

    Google Scholar 

  34. Mallapragada SK, Peppas NA (1996) Mechanism of dissolution of semicrystalline poly(vinyl alcohol) in water. J Polymer Sci B Polymer Phys 34:1339–1346

    Article  CAS  Google Scholar 

  35. Peppas NA, Merrill EW (1976) Differential scanning calorimetry of crystallized PVA hydrogels. J Appl Polym Sci 20:1457–1465

    Article  CAS  Google Scholar 

  36. Albornoz C, Sileo EE, Jacobo SE (2004) Magnetic polymers of maghemite (γ-Fe2O3) and polyvinyl alcohol. Phys B Condens Matter 354(31):149–153. doi:10.1016/j.physb.2004.09.038

    Article  CAS  Google Scholar 

  37. Ricciardi R, Auriemma F, Gaillet C, De Rosa C, Laupretre F (2004) Investigation of the crystallinity of freeze/thaw poly(vinyl) alcohol hydrogels by different techniques. Macromolecules 37:9510–9516. doi:10.1021/ma048418v

    Article  CAS  Google Scholar 

  38. Gupta S, Pramanik AK, Kailath A, Mishra T, Guha A, Nayar S, Sinha A (2009) Composition dependent structural modulations in transparent poly(vinyl alcohol) hydrogels. Colloid Surf B Biointerfaces 74:186–190. doi:10.1016/j.colsurfb.2009.07.015

    Article  CAS  Google Scholar 

  39. Cullity BD (1978) Elements of X-ray diffraction, 2nd edn. Addison-Wesley, Reading

    Google Scholar 

  40. Kokabi M, Sirousazar M, Hassan ZM (2007) PVA–clay nanocomposite hydrogel for wound dressing. Eur Polym J J43:773–781. doi:10.1016/j.eurpolymj.2006.11.030

    Article  Google Scholar 

  41. Daniel-da-Silva AL, Lóio R, Lopes-da-Silva JA, Trindade T, Goodfellow BJ, Gil AM (2008) Effects of magnetite nanoparticles on the thermorheological properties of carrageenan hydrogels. J Colloid Interface Sci 324:205–211. doi:10.1016/j.jcis.2008.04.051

    Article  CAS  Google Scholar 

  42. Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110. doi:10.1021/cr068445e

    Article  CAS  Google Scholar 

  43. Wu JH, Ko SP, Liu HL, Kim S, Ju JS, Kim YK (2007) Sub 5 nm magnetite nanoparticles: synthesis, microstructure, and magnetic properties. Mater Lett 61:3124–3129. doi:10.1016/j.matlet.2006.11.032

    Article  CAS  Google Scholar 

  44. Vargas JM, Lima E Jr, Zysler RD, Duque JGS, De Biasi E, Knobel M (2008) Effective anisotropy field variation of magnetite nanoparticles with size reduction. Eur Phys J B 64:211–218. doi:10.1140/epjb/e2008-00294-6

    Article  CAS  Google Scholar 

  45. Majewski P, Thierry B (2007) Functionalized magnetite nanoparticles—synthesis, properties, and bio-applications. Crit Rev Solid Mater Sci 32:203–215. doi:10.1080/10408430701776680

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by National Scientific and Technical Research Council (CONICET), National Agency of Scientific and Technology Promotion (ANPCyT), and National University of Mar del Plata (UNMdP). The authors would like to thank the cooperation support by of Eng. David D' Amico in the XRD analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vera A. Alvarez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonzalez, J.S., Hoppe, C.E., Muraca, D. et al. Synthesis and characterization of PVA ferrogels obtained through a one-pot freezing–thawing procedure. Colloid Polym Sci 289, 1839–1846 (2011). https://doi.org/10.1007/s00396-011-2501-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-011-2501-1

Keywords

Navigation