Skip to main content
Log in

Dispersion of multiwalled carbon nanotubes (MWCNTs) by ionic liquid-based Gemini pyrrolidinium surfactants in aqueous solution

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Gemini pyrrolidinium surfactants ([C n py-4-C n py][Br2]) are a new kind of ionic liquid-based Gemini surfactants. Multiwalled carbon nanotubes (MWCNTs) can be dispersed effectively in [C n py-4-C n py][Br2] aqueous solution. The resulting MWCNT suspensions are stable for more than 1 month, and no precipitation is observed. Ultraviolet–visible–near infrared (UV–Vis–NIR) spectra are performed to determine the dispersion of MWCNTs and the optimal concentration (C opt) of [C n py-4-C n py][Br2]. Compared with C n MPB, [C n py-4-C n py][Br2] is more effective in dispersing MWCNTs. It was also observed that [C n py-4-C n py][Br2] with a longer hydrocarbon chain displays a stronger dispersion ability. The adsorption of [C n py-4-C n py][Br2] on MWCNTs is investigated by zeta-potential and surface tension measurements. The zeta-potential results show that MWCNTs dispersed in [C n py-4-C n py][Br2] aqueous solution have relatively high positive charges. It is the electrostatic repulsion force between the MWCNTs which makes them stable. Furthermore, a possible dispersion mechanism is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Iijima S (1991) Nature 354:56

    Article  CAS  Google Scholar 

  2. Iijima S, Ichihashi T (1993) Nature 363:603

    Article  CAS  Google Scholar 

  3. Ajayan PM (1999) Chem Rev 99:1787

    Article  CAS  Google Scholar 

  4. Baughman RH, Zakhidov AA, de Heer WA (2002) Science 297:787

    Article  CAS  Google Scholar 

  5. Balasubramanian K, Burghard M (2005) Small 1:180

    Article  CAS  Google Scholar 

  6. Prato M, Kostarelos K, Bianco A (2008) Acc Chem Res 41:60

    Article  CAS  Google Scholar 

  7. Vaisman L, Wagner HD, Marom G (2006) Adv Colloid Interface Sci 128–130:37

    Article  Google Scholar 

  8. Wang H (2009) Curr Opin Colloid Interface Sci 14:364

    Article  CAS  Google Scholar 

  9. Zhao YL, Stoddart JF (2009) Acc Chem Res 42:1161

    Article  CAS  Google Scholar 

  10. Bandyopadhyaya R, Nativ-Roth E, Regev O, Yerushalmi-Rozen R (2002) Nano Lett 2:25

    Article  CAS  Google Scholar 

  11. Zhang XF, Liu T, Sreekumar TV, Kumar S, Moore VC, Hauge RH, Smalley RE (2003) Nano Lett 3:1285

    Article  CAS  Google Scholar 

  12. Kang YK, Lee OS, Deria P, Kim SH, Park TH, Bonnell DA, Saven JG, Therien MJ (2009) Nano Lett 9:1414

    Article  CAS  Google Scholar 

  13. Welton T (1999) Chem Rev 99:2071

    Article  CAS  Google Scholar 

  14. Olivier-Bourbigou H, Magna L, Morvan D (2010) Appl Catal A: General 373:1

    Article  CAS  Google Scholar 

  15. Fukushima T, Kosaka A, Ishimura Y, Yamamoto T, Takigawa T, Ishii N, Aida T (2003) Science 300:2072

    Article  CAS  Google Scholar 

  16. Zhou XS, Wu TB, Ding KL, Hu BJ, Hou MQ, Han BX (2009) Chem Commun 14:1897

    Article  Google Scholar 

  17. Kocharova N, Ääritalo T, Leiro J, Kankare J, Lukkari J (2007) Langmuir 23:3363

    Article  CAS  Google Scholar 

  18. Crescenzo AD, Demurtas D, Renzetti A, Siani G, Maria PD, Meneghetti M, Prato M, Fontana A (2009) Soft Matter 5:62

    Article  Google Scholar 

  19. Dong B, Su YJ, Liu YH, Yuan J, Xu JK, Zheng LQ (2011) J Colloid Interface Sci 356:190

    Article  CAS  Google Scholar 

  20. Ding YX, Zha M, Zhang J, Wang SS (2007) Colloids Surf A 298:201

    Article  CAS  Google Scholar 

  21. Baltazar QQ, Chandawalla J, Anderson JL (2007) Colloids Surf A 302:150

    Article  CAS  Google Scholar 

  22. Ao MQ, Xu GY, Zhu YY, Bai Y (2008) J Colloid Interface Sci 326:490

    Article  CAS  Google Scholar 

  23. Ao MQ, Huang PP, Xu GY, Yang XD, Wang YJ (2009) Colloid Polym Sci 287:395

    Article  CAS  Google Scholar 

  24. Liu YH, Yu L, Zhang SH, Yuan J, Shi LJ, Zheng LQ (2010) Colloids Surf A 359:66

    Article  CAS  Google Scholar 

  25. Anderson JL, Ding RF, Ellern A, Armstrong DW (2005) J Am Chem Soc 127:593

    Article  CAS  Google Scholar 

  26. Goossens K, Lava K, Nockemann P, Hecke KV, Meervelt LV, Driesen K, Görller-Walrand C, Binnemans K, Cardinaels T (2009) Chem Eur J 15:656

    Article  CAS  Google Scholar 

  27. Kataura H, Kumazawa Y, Maniwa Y, Umezu I, Suzuki S, Ohtsuka Y, Achiba Y (1999) Synth Met 103:2555

    Article  CAS  Google Scholar 

  28. Laurent JS, Voisin C, Gassabois G, Delalande C, Roussignol P, Jost O, Capes L (2003) Phys Rev Lett 90:057404

    Article  Google Scholar 

  29. Yu JR, Grossiord N, Koning CE, Loos J (2007) Carbon 45:618

    Article  CAS  Google Scholar 

  30. Usrey ML, Chaffee A, Jeng ES, Strano MS (2009) J Phys Chem C 113:9532

    Article  CAS  Google Scholar 

  31. Rastogi R, Kaushal R, Tripathi SK, Sharma AL, Kaur I, Bharadwaj LM (2008) J Colloid Interface Sci 328:421

    Article  CAS  Google Scholar 

  32. Shin JY, Premkumar T, Geckeler KE (2008) Chem Eur J 14:6044

    Article  CAS  Google Scholar 

  33. Weisman RB, Bachilo SM (2003) Nano Lett 3:1235

    Article  CAS  Google Scholar 

  34. Moore VC, Strano MS, Haroz EH, Hauge RH, Smalley RE (2003) Nano Lett 3:1379

    Article  CAS  Google Scholar 

  35. Paredes JI, Burghard M (2004) Langmuir 20:5149

    Article  CAS  Google Scholar 

  36. Islam MF, Rojas E, Bergey DM, Johnson AT, Yodh AG (2003) Nano Lett 3:269

    Article  CAS  Google Scholar 

  37. Zhao MW, Zheng LQ (2011) Phys Chem Chem Phys 13:1332

    Article  CAS  Google Scholar 

  38. Hiemez PC, Rajagopalan R (1997) Principles of colloid and surface chemistry. Dekker, New York

    Google Scholar 

  39. Matarredona O, Rhoads H, Li ZR, Harwell JH, Balzano L, Resasco DE (2003) J Phys Chem B 107:13357

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (No. 50972080), National Basic Research Program (2009CB930101). And this work was partially supported by Laboratory of Organic Optoelectronic Functional Materials and Molecular Engineering, TIPC, CAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liqiang Zheng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(DOC 96 kb)

Fig. S2

(DOC 238 kb)

Fig. S3

(DOC 239 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, S., Lu, F. & Zheng, L. Dispersion of multiwalled carbon nanotubes (MWCNTs) by ionic liquid-based Gemini pyrrolidinium surfactants in aqueous solution. Colloid Polym Sci 289, 1815–1819 (2011). https://doi.org/10.1007/s00396-011-2500-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-011-2500-2

Keywords

Navigation