Skip to main content
Log in

Diffusion of poly(ethylene glycol) and ectoine in NIPAAm hydrogels with confocal Raman spectroscopy

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The diffusion behavior of poly(ethylene glycol) (PEG) in N-isopropylacrylamide (NIPAAm) hydrogels was investigated using confocal Raman spectroscopy with regard to temperature (25°C, 30°C and 35°C), PEG concentration (10 and 40 wt.%), PEG molecular weight (2,000 and 12,000 g/mol) and addition of the compatible solute ectoine (0.1 and 2 wt.%). Swelling and shrinking of the gels was observed by means of confocal Raman spectroscopy. The swelling behavior of NIPAAm gels in aqueous solutions of PEG and ectoine was found to resemble the swelling behavior in pure water with regard to temperature, i.e., the gel shrinks with increasing temperature. However, the presence and concentration of PEG and ectoine influence the swelling behavior by lowering the volume phase-transition temperature of the gel and facilitating shrinking. In some cases, a re-swelling of the gel was observed after the initial shrinking at the onset of PEG diffusion, which can be explained by PEG changing the chemical potential in the gel phase as it diffuses into the sample allowing the water to re-enter. The expulsion of water from the gel during shrinking and the so-caused increase of PNIPAAm and PEG concentrations in some cases led to the PEG diffusion seemingly being faster in more shrunken gels despite of their higher diffusion resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. At higher concentrations of KCl and NaCl the water activity coefficient decreases again.

  2. When the wavelength of the emitted photon is the same as the excitation wavelength the effect is called Rayleigh scattering. It is approximately three orders of magnitude stronger than Raman scattering and would dominate the spectrum if it were not removed by a suitable spectral filter.

  3. The glass is necessary to give the gel films mechanical stability and to thus facilitate handling. The covalent bonds between gel and glass prevent the gel from being washed off during the diffusion experiments.

  4. The gels were washed thoroughly with deionized water after synthesis (see “Synthesis of gel samples”) to remove oligomers and unreacted monomers that could diffuse out of the network. The network itself was covalently bonded to the carrier glass and could not diffuse into the PEG solution.

  5. The concentration of PEG outside the hydrogel film remained constant within a fluctuation of max. ± 0.48 wt.% for all experiments as it was supposed to.

  6. The extent in the other directions was of no interest here since a uniform concentration was assumed parallel to the sample surface.

  7. The two systems were fitted separately so as not put too much weight on the binary system PEG/water, yet the similarities between A and C as well as between B and E suggest that a common fit would yield good results as well.

  8. For very high concentrations of ethanol, acetone and PEG the gel swells again, but not to the same value as in pure water [29].

References

  1. Peppas NA (1986) Fundamentals. Hydrogels in medicine and pharmacy, vol 1. CRC Press, Boca Raton

    Google Scholar 

  2. Peppas NA (1987) Polymers. Hydrogels in medicine and pharmacy, vol 2. CRC Press, Boca Raton

    Google Scholar 

  3. Peppas NA (1987) Properties and applications. Hydrogels in medicine and pharmacy, vol 3. CRC Press, Boca Raton

    Google Scholar 

  4. Whistler RL (1977) Journal of the Technical Association of the Pulp and Paper Industry 60(10):64

    CAS  Google Scholar 

  5. Hirotsu S (1994) Phase Transit 47:183

    Article  CAS  Google Scholar 

  6. Afroze F, Nies E, Berghmans H (2000) J Mol Struct 554:55

    Article  CAS  Google Scholar 

  7. Barbu E, Verestiuc L, Iancu M, Jatariu A, Lungu A, Tsibouklis J (2009) Nanotechnology 20:225108

    Article  Google Scholar 

  8. Gutowska A, Bae YH, Feijen J, Kim SW (1992) J Control Release 22:95

    Article  CAS  Google Scholar 

  9. Palasis M, Gehrke SH (1992) J Control Release 18(1):1

    Article  CAS  Google Scholar 

  10. Zhang XZ, Zhang JT, Zhuo RX, Chu CC (2002) Polymer 43:4823

    Article  CAS  Google Scholar 

  11. Tsujii K (2002) Recent Research Developments in Macromolecules Research 6:99

    CAS  Google Scholar 

  12. Zhang W, Gaberman I, Ciszkowska M (2002) Anal Chem 74(6):1343

    Article  CAS  Google Scholar 

  13. Oliveira ED, Silva AFS, Freitas RFS (2004) Polymer 45(4):1287

    Article  CAS  Google Scholar 

  14. Andersson M, Axelsson A, Zacchi G (1997) Int J Pharm 157:199

    Article  CAS  Google Scholar 

  15. Sierra-Martín B, Choi Y, Romero-Cano MS, Cosgrove T, Vincent B, Fernández-Barbero A (2005) Macromolecules 38(26):10782

    Article  Google Scholar 

  16. Marchetti M, Prager S, Cussler EL (1990) Macromolecules 23(6):1760

    Article  CAS  Google Scholar 

  17. Rubio Retama J, Frick B, Seydel T, Stamm M, Fernandez Barbero A, López Cabarcos E (2008) Macromolecules 41(13):4739

    Article  CAS  Google Scholar 

  18. Yoo MK, Sung YK, Leeb YM, Cho CS (2000) Polymer 41:5713

    Article  CAS  Google Scholar 

  19. Chun SW, Kim JD (1996) J Control Release 38:39

    Article  CAS  Google Scholar 

  20. Andersson M, Axelsson A, Zacchi G (1998) J Control Release 50:273

    Article  CAS  Google Scholar 

  21. Hirose H, Shibayama M (1998) Macromolecules 31(16):5336

    Article  CAS  Google Scholar 

  22. Kokufuta E, Nakaizumi S, Ito S, Tanaka T (1995) Macromolecules 28(5):1704

    Article  CAS  Google Scholar 

  23. Suzuki A, Sanda K, Omori Y (1997) J Chem Phys 107(13):5179

    Article  CAS  Google Scholar 

  24. Wu C, Zhou S (1997) Macromolecules 30(3):574

    Article  CAS  Google Scholar 

  25. Miyagishi S, Takagi M, Kadono S, Ohta A, Asakawa T (2003) J Colloid Interface Sci 261(1):191

    Article  CAS  Google Scholar 

  26. Kalagasidis-Kruis̆ć M, Ili M, Filipovi J (2009) Polym Bull 63(2):197

    Article  Google Scholar 

  27. Nakayama D, Nishio Y, Watanabe M (2003) Langmuir 19(20):8542

    Article  CAS  Google Scholar 

  28. Tokuyama H, Kato Y (2008) Colloids Surf B Biointerfaces 67:92

    Article  CAS  Google Scholar 

  29. Hüther A (2000) Experimentelle und theoretische Untersuchungen zum Quellungsgleichgewicht von Hydrogelen in wässrigen Lösungen. Dissertation, Universität Kaiserslautern

  30. Ishidao T, Sugimoto H, Onoue Y, Song IS, Iwai Y, Arai Y (1997) J Chem Eng Jpn 30(1):162

    Article  CAS  Google Scholar 

  31. Suzuki A, Tanaka T (1990) Nature 346:345

    Article  CAS  Google Scholar 

  32. Vakkalanka SK, Brazel CS, Peppas NA (1996) J Biomater Sci Polym Ed 8(2):119

    Article  CAS  Google Scholar 

  33. Zhang JT, Huang SW, Zhuo RX (2004) Macromol Chem Phys 205(1):107

    Article  CAS  Google Scholar 

  34. Shibayama M, Mizutani S, Nomura S (1996) Macromolecules 29(6):2019

    Article  CAS  Google Scholar 

  35. Maolin Z, Jun L, Min Y, Hongfei H (2000) Radiat Phys Chem 58:397

    Article  Google Scholar 

  36. Ishidao T, Akagi M, Sugimoto H, Iwai Y, Arai Y (1993) Macromolecules 26(26):7361

    Article  CAS  Google Scholar 

  37. Murase Y, Maeda S, Hashimoto S, Yoshida R (2009) Langmuir 25(1):483

    Article  CAS  Google Scholar 

  38. Yoshida R, Yamaguchi T, Kokufuta E (1999) J Artif Organs 2:135

    Article  CAS  Google Scholar 

  39. Chresand TJ, Dale BE, Hanson SL, Gillies RJ (1988) Biotechnol Bioeng 32(9):1029

    Article  CAS  Google Scholar 

  40. Lowman AM, Peppas NA (1998) Proc Int Symp Control Release Bioact Mater 25:244

    Google Scholar 

  41. de la Torre PM, Torrado S, Torrado S (2003) Biometerials 24(8):1459

    Article  Google Scholar 

  42. Garmo ØA, Davison W, Zhang H (2008) Anal Chem 80(23):9220

    Article  CAS  Google Scholar 

  43. Zhang H, Davison W (1999) Anal Chim Acta 6:329

    Article  Google Scholar 

  44. Kim SW, Wisniewski S, Gregonis DE, Andrade JD (1975) Polymer Preprints 16(2):293

    CAS  Google Scholar 

  45. McCarey BE, Schmidt FH, Wilkinson KD, Baum JP (1984) Curr Eye Res 3(8):977

    Article  CAS  Google Scholar 

  46. Šmid Korbar J, Kristl J, Srèiè S (1984) Pharmazie 39(9):606

    Google Scholar 

  47. van Stroe-Biezen SAM, Everaerts FM, Janssen LJJ, Tacken RA (1993) Anal Chim Acta 273:553

    Article  Google Scholar 

  48. Barbato F, Boccia A, Cappello B, La Rotonda MI, Del Nobile MA, Mensitieri G, Netti PA (1996) Proc Int Symp Control Release Bioact Mater 23:463

    Google Scholar 

  49. Varshosaz J, Hajian M (2004) Drug Deliv 11(1):53

    Article  CAS  Google Scholar 

  50. Falk B, Shivkumar S (2004) Mater Lett 58:3261

    Article  CAS  Google Scholar 

  51. Stilbs P (1987) Prog Nucl Magn Reson Spectrosc 19:1

    Article  CAS  Google Scholar 

  52. Peschier LJC, Bouwstra JA, de Bleyser J, Junginger HE, Leyte JC (1993) Biomaterials 14(12):945

    Article  CAS  Google Scholar 

  53. Ray SS, Rajamohanan PR, Badiger MV, Devotta I, Ganapathy S, Mshelkar RA (1998) Chem Eng Sci 53(5):869

    Article  CAS  Google Scholar 

  54. McConville P, Pope JM (2001) The CLAO Journal: Official Publication of the Contact Lens Association of Ophthalmologists 27(4):186

    CAS  Google Scholar 

  55. Manetti C, Casciani L, Pescosolido N (2001) Polymer 43(1):87

    Article  Google Scholar 

  56. Petrovic SC, Zhang W, Ciszkowska M (2000) Anal Chem 72(15):3449

    Article  CAS  Google Scholar 

  57. Hyk W, Ciszkowska M (2002) J Phys Chem B 106(44):11469

    Article  CAS  Google Scholar 

  58. Hyk W, Karbarz M, Stojek Z, Ciszkowska M (2004) J Phys Chem B 108(3):864

    Article  CAS  Google Scholar 

  59. Wild A (2003) Multicomponent diffusion in liquids. Dissertation, TU München

  60. Rehfeldt S, Stichlmair J (2010) Fluid Phase Equilib 290(1–2):1

    Article  CAS  Google Scholar 

  61. Leaist DG, Hao L (1994) J Phys Chem 98(17):4702

    Article  CAS  Google Scholar 

  62. Vergara A, Paduano L, D’Errico G, Sartorio R (1999) Phys Chem Chem Phys 1:4875

    Article  CAS  Google Scholar 

  63. Albright JG, Paduano L, Sartorio R, Vergara A, Vitagliano V (2001) J Chem Eng Data 46(5):1283

    Article  CAS  Google Scholar 

  64. Lewus RK, Carta G (2001) Ind Eng Chem Res 40(6):1548

    Article  CAS  Google Scholar 

  65. Schlick S, Pilar J, Kweon SC, Vacik J, Gao Z, Labsky J (1995) Macromolecules 28(17):5780

    Article  CAS  Google Scholar 

  66. Pilar̆ J, Kr̆íz̆ J, Meissner B, Kadlec P, Pr̆ádný M (2009) Polymer 50(19):4543

    Article  Google Scholar 

  67. Appel R, Zerda TW, Wang C, Hu Z (2001) Polymer 42:1561

    Article  CAS  Google Scholar 

  68. Kwak S, Lafleur M (2003) Appl Spectrosc 57(7):768

    Article  CAS  Google Scholar 

  69. Schabel W (2005) Chemie Ingenieur Technik 77(12):1915

    Article  CAS  Google Scholar 

  70. Heinemann M, Meinberg H, Büchs J, Koß HJ, Ansorge-Schumacher MB (2005) Appl Spectrosc 59(3):280

    Article  CAS  Google Scholar 

  71. Bardow A, Göke V, Koß HJ, Marquardt W (2006) AIChE J 52(12):4004

    Article  CAS  Google Scholar 

  72. Krüger KM (2007) Sorption und Diffusion von Lösungsmitteln in glasartigen Polymeren. Dissertation, Universität Dortmund

  73. Ludwig I, Schabel W, Kind M, Castaing JC, Ferlin P (2007) AIChE J 53(3):549

    Article  CAS  Google Scholar 

  74. Naddaf A, Bart HJ (2009) Chemie Ingenieur Technik 81(8)

  75. Geonnotti AR, Furlow MJ, Wu T, DeSoto MG, Henderson MH, Kiser PF, Katz DF (2008) Biomacromolecules 9(2):748

    Article  CAS  Google Scholar 

  76. Weng L, Zhou X, Zhang X, Zhang L, Xu J (2002) Macromol Rapid Commun 23(16):968

    Article  CAS  Google Scholar 

  77. Fatin-Rouge N, Wilkinson KJ, Buffle J (2006) J Phys Chem B 110(41):20133

    Article  CAS  Google Scholar 

  78. Boukari H, Silva C, Nossal R, Horkay F (2008) Mater Res Soc 1060E

  79. Kosto KB, William MD (2004) AIChE J 50(11):2648

    Article  CAS  Google Scholar 

  80. Zhang X, Hirota N, Narita T, Gong JP, Osada Y (1999) J Phys Chem B 103:6069

    Article  CAS  Google Scholar 

  81. Gong JP, Hirota N, Narita T, Osada Y (2000) J Phys Chem B 104:9904

    Article  CAS  Google Scholar 

  82. Hirota N, Kumaki Y, Narita T, Gong JP, Osada Y (2000) J Phys Chem B 104(42):9898

    Article  CAS  Google Scholar 

  83. Zhou J, Han Y, Zhang X, Xu J (2003) J Zhejiang Univ Sci 4(2):166

    Article  CAS  Google Scholar 

  84. Held C, Neuhaus T, Sadowski G (2010) Biophys Chem 152(1–3):28

    Article  CAS  Google Scholar 

  85. Bardow A, Göke V, Koß HJ, Lucas K, Marquardt W (2002) Chemie Ingenieur Technik 74:569

    Article  CAS  Google Scholar 

  86. Banwell CN, McCash EM (1999) Molekülspektroskopie. Oldenbourg Verlag, München

    Google Scholar 

  87. Colthup NB, Daly LH, Wiberly SE (1990) Introduction to infrared and Raman spectroscopy, 3rd edn. Academic Press, San Diego

    Google Scholar 

  88. Alsmeyer F, Koß HJ, Marquardt W (2004) Appl Spectrosc 58(8):975

    Article  CAS  Google Scholar 

  89. Alsmeyer F, Marquardt W (2004) Appl Spectrosc 58(8):986

    Article  CAS  Google Scholar 

  90. Kriesten E, Alsmeyer F, Bardow A, Marquardt W (2008) Chemometr Intell Lab Syst 91(2):181

    Article  CAS  Google Scholar 

  91. Everall NJ (2000) Appl Spectrosc 54(6):773

    Article  CAS  Google Scholar 

  92. Everall NJ (2000) Appl Spectrosc 54(10):1515

    Article  CAS  Google Scholar 

  93. Ikehata A, Ushiki H (2002) Polymer 43(7):2089

    Article  CAS  Google Scholar 

  94. Gross J, Sadowski G (2001) Ind Eng Chem Res 40(4):1244

    Article  CAS  Google Scholar 

  95. Miao B, Vilgis TA, Poggendorf S, Sadowski G (2010) Macromol Theory Simul 19(7):414

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by Deutsche Forschungsgemeinschaft Priority Programme “Intelligent Hydrogels” (DFG SPP1259). We thank bitop AG for providing ectoine. We also thank Christoph Fik (Lehrstuhl für Biomaterialien und Polymerwissenschaften, TU Dortmund) for the GPC-measurements. We greatfully acknowledge Prof. Marquardt’s (Aachener Verfahrenstechnik, RWTH Aachen University) support regarding the calibration and analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Sadowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poggendorf, S., Adama Mba, G., Engel, D. et al. Diffusion of poly(ethylene glycol) and ectoine in NIPAAm hydrogels with confocal Raman spectroscopy. Colloid Polym Sci 289, 545–559 (2011). https://doi.org/10.1007/s00396-011-2399-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-011-2399-7

Keywords

Navigation