Skip to main content
Log in

Simulational study of anomalous tracer diffusion in hydrogels

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this article, we analyze different factors that affect the diffusion behavior of small tracer particles (as they are used, e.g., in fluorescence correlation spectroscopy (FCS)) in the polymer network of a hydrogel and perform simulations of various simplified models. We observe, that under certain circumstances the attraction of a tracer particle to the polymer network strands might cause subdiffusive behavior on intermediate time scales. In theory, this behavior could be employed to examine the network structure and swelling behavior of weakly crosslinked hydrogels with the help of FCS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Winkler RG (2007) J Chem Phys 127:054904

    Article  Google Scholar 

  2. Lumma D, Keller S, Vilgis T, Rädler JO (2003) Phys Rev Lett 90:218–301

    Article  Google Scholar 

  3. Nandi CK, Parui PP, Brutschy B, Schmidt TL, Heckel A (2008) Anal Bioanal Chem 390:1595

    Article  CAS  Google Scholar 

  4. Bacia K, Scherfeld D, Kahya N, Schwille P (2004) Biophys J 87:1034

    Article  CAS  Google Scholar 

  5. Cherdhirankorn T, Best A, Koynov K, Peneva K, Müllen K, Fytas G (2009) J Phys Chem B 113:3355

    Article  CAS  Google Scholar 

  6. Cherdhirankorn T, Harmandaris V, Juhari A, Voudouris P, Fytas G, Kremer K, Koynov K (2009) Macromolecules 13:4858

    Article  Google Scholar 

  7. Gallo P, Rovere M (2003) J Phys Condens Matter 15:7625

    Article  CAS  Google Scholar 

  8. Dieterich P, Klages R, Preuss R, Schwab A (2008) Proc Natl Acad Sci 105:259

    Article  Google Scholar 

  9. Wong I, Gardel M, Reichman D, Weeks E, Valentine M, Bausch A, Weitz D (2004) Phys Rev Lett 92:178101

    Article  CAS  Google Scholar 

  10. Tolić-Nørrelykke IM, Munteanu EL, Thon G, Oddershede L, Berg-Sørensen K (2004) Phys Rev Lett 93:078102

    Article  Google Scholar 

  11. Banks DS, Fradin C (2005) Biophys J 89:2960

    Article  CAS  Google Scholar 

  12. Szymanski J, Weiss M (2009) Phys Rev Lett 103(3):038102. doi:10.1103/PhysRevLett.103.038102

    Article  Google Scholar 

  13. Saxton MJ (1996) Biophys J 70:1250

    Article  CAS  Google Scholar 

  14. Sprakel J, van der Gucht J, Cohen Stuart MA, Besseling NAM (2007) Phys Rev Lett 99(20):208301. doi:10.1103/PhysRevLett.99.208301

    Article  Google Scholar 

  15. Hu T, Grosberg AY, Shklovskii BI (2006) Biophys J 90(8):2731. doi:10.1529/biophysj.105.078162

    Article  CAS  Google Scholar 

  16. Berg OG, Winter RB, von Hippel PH (1981) Biochemistry 20:6929

    Article  CAS  Google Scholar 

  17. Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca

    Google Scholar 

  18. Pincus P (1976) Macromolecules 9:386. doi:10.1021/ma60051a002

    Article  CAS  Google Scholar 

  19. de Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, Ithaca

    Google Scholar 

  20. Allen MP, Tildesley DJ (1987) Computer simulation of liquids, 1st edn. Oxford Science Publications, Clarendon Press, Oxford

    Google Scholar 

  21. Padding JT, Louis AA (2006) Phys Rev E Stat Nonlinear Soft Matter Phys 74(3):031402. doi:10.1103/PhysRevE.74.031402

    Article  CAS  Google Scholar 

  22. Milchev AI (2002) In: Burkhard Dünweg AIM, Landau DP (eds) Computer simulations of surfaces and interfaces, vol 114. Kluwer, Dordrecht

    Google Scholar 

  23. Limbach HJ, Arnold A, Mann BA, Holm C (2006) Comput Phys Commun 174(9):704. doi:10.1016/j.cpc.2005.10.005

    Article  CAS  Google Scholar 

  24. Ben-Avraham D, Havlin S (2000) Diffusion and reactions in fractals and disordered systems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  25. Klages R (2010) In: Schuster HG (ed) Reviews of nonlinear dynamics and complexity, vol 3. Wiley, New York. pp 169–216

    Chapter  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support provided by the Deutsche Forschungsgemeinschaft (DFG) as part of the SPP 1259 “Intelligente Hydrogele”.

The authors want to thank Georg Fytas, Alexander Grosberg, Owen Hickey, Felix Höfling, Peter Kos̆ovan, Ralf Metzler, Ricardo Raccis, and Roland Winkler for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf Lenz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tabatabaei, F., Lenz, O. & Holm, C. Simulational study of anomalous tracer diffusion in hydrogels. Colloid Polym Sci 289, 523–534 (2011). https://doi.org/10.1007/s00396-011-2393-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-011-2393-0

Keywords

Navigation