Skip to main content
Log in

pH-responsive microgels containing hydrophilic crosslinking co-monomers: shell-exploding microgels through design

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

pH-responsive microgels are crosslinked polymer colloids that swell when the pH approaches the pK a of the particles. They have potential application for injectable gels for tissue repair and drug delivery systems. This study focuses on the pH-triggered gelation behaviour of a series of poly (EA/MAA/X) microgels. EA and MAA are ethylacrylate and methacrylic acid. Here, we investigate the effect of crosslinking monomer type (X) on microgel properties. The crosslinking monomers used were poly (ethyleneglycol) dimethacrylate (PEGD), ethyleneglycol dimethacrylate (EGD) and butanediol diacrylate (BDD). The microgel containing PEGD (m-PEGD) is a new system. The microgel containing BDD (m-BDD) was used as a control system. The concentrated microgel dispersions formed physical gels when the pH was increased to 5.3–6.7, and the polymer volume fractions (ϕ p ) were above about 0.05. Evidence from photon correlation spectroscopy (PCS) and dynamic rheology was presented for abrupt pH-triggered increases, and then decreases of the hydrodynamic diameters for m-PEGD and the microgel prepared using EGD (m-EGD). This appears to be tuneable through crosslinker structure. An unexpected gelation behaviour, which may involve a new gel state for microgels, was found for m-PEGD dispersions. Uniquely, those dispersions formed gels at pH values less than the microgel's pK a . This behaviour was linked to an outer-shell electrostatic repulsive interaction. The data point to a phenomenon, whereby the m-PEGD shells appear to explode at pH values above 7.0. The control microgel prepared, using BDD (m-BDD), did not show any evidence of shell fragmentation at any pH. That microgel has potential as a model pH-responsive microgel system in that the properties measured by PCS and rheology agreed well. To probe that system in more detail, the rheological data for m-BDD was analysed using scaling theory. The variation of the storage modulus (G') with ϕ p gave a scaling exponent of 2.0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Dalmont H, Pinprayoon O, Saunders BR (2008) Langmuir 24:2834

    Article  CAS  Google Scholar 

  2. Rodriguez BE, Wolfe MS, Fryd M (1994) Macromolecules 27:6642

    Article  CAS  Google Scholar 

  3. Saunders JM, Tong T, Le Maitre CL, Freemont TJ, Saunders BR (2007) Soft Matter 3:486

    Article  CAS  Google Scholar 

  4. Tan BH, Tam KC, Lam YC, Tan CB (2005) Adv Coll Interf Sci 113:111

    Article  CAS  Google Scholar 

  5. Ho KM, Li WY, Wong CH, Li P (2010) Coll Polym Sci 288:1503

    Article  CAS  Google Scholar 

  6. Lally S, Bird R, Freemont TJ, Saunders BR (2009) Coll Polym Sci 287:335

    Article  CAS  Google Scholar 

  7. Saunders BR, Laajam N, Daly E, Teow S, Hu X, Stepto R (2009) Adv Coll Interf Sci 147:251

    Article  Google Scholar 

  8. Routh AF, Zimmerman WB (2003) J Coll Interf Sci 261:547

    Article  CAS  Google Scholar 

  9. Hu X, Tong Z, Lyon LA (2010) J Am Chem Soc 132:11470

    Article  CAS  Google Scholar 

  10. Kleinen J, Klee A, Richtering W (2010) Langmuir 26:11258

    Article  CAS  Google Scholar 

  11. Kleinen J, Richtering W (2008) Macromolecules 41:1785

    Article  CAS  Google Scholar 

  12. Karg M, Pstoriza-Santos I, Rodriguez-Gonzalez B, von Klitzing R, Wellert S, Hellweg T (2008) Langmuir 24:6300

    Article  CAS  Google Scholar 

  13. Hoare T, Pelton R (2008) Langmuir 24:1005

    Article  CAS  Google Scholar 

  14. Tan BH, Tam KC, Dupin D, Armes SP (2010) Langmuir 26:2736

    Article  CAS  Google Scholar 

  15. Weast RC, Astle MJ, Beyer WH (1985) CRC Handbook of Chemistry and Physics, 65th edn. CRC, Boca Raton

    Google Scholar 

  16. Pinprayoon O, Groves B, Saunders BR (2008) J Coll Interf Sci 321:315

    Article  CAS  Google Scholar 

  17. Flory PJ. Principles of polymer chemistry, Cornell Univ. Press 1953

  18. Brandrup J, Immergut EH, Grulke EA, Abe A, Bloch DR. CRC Polymer Handbook, John Wiley & Sons 1999

  19. Borrega R, Cloitre M, Betreimieux I, Ernst B, Leibler L (1999) Europhys Lett 47:729

    Article  CAS  Google Scholar 

  20. Erwin BM, Cloitre M, Gauthier M, Vlassopoulos D (2010) Soft Matter 6:2825

    Article  CAS  Google Scholar 

  21. Lally S, Mackenzie P, LeMaitre CL, Freemont TJ, Saunders BR (2007) J Coll Interf Sci 316:367

    Article  CAS  Google Scholar 

  22. Trappe V, Weitz DA (2000) Phys Rev Lett 85:449

    Article  CAS  Google Scholar 

  23. van der Linden E, Sagis LMC (2001) Langmuir 17:5821

    Article  Google Scholar 

  24. Zaccarelli E (2007) J Phys Condens Matter 19:323101

    Google Scholar 

  25. Mitescu CD, Musolf MJ (1983) J Phys Lett 44:L679

    Article  CAS  Google Scholar 

  26. Capek I (2005) Adv Coll Interf Sci 118:73

    Article  CAS  Google Scholar 

  27. Chougnet A, Audibert A, Moan M (2007) Rheol. Acta 46:793

    CAS  Google Scholar 

  28. Winter HH (1987) Polym Eng Sci 27:1698

    Article  CAS  Google Scholar 

  29. Winter HH, Chambon F (1986) J Rheol 30:367

    Article  CAS  Google Scholar 

  30. Ohshima H, Makino K, Kato T, Fujimoto K, Kondo T, Kawaguchi H (1993) J Coll Interf Sci 159:512

    Article  CAS  Google Scholar 

  31. Lyon LA, Debord JD, Debord SB, Jones CD, McGrath JG, Serpe MJ (2004) J Phys Chem B 108:19099

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the enterprise, medicine and material schools of the University of Manchester for funding this project. We are also grateful to Prof. Peter Lovell for access to the PCS instrument. We are also grateful for the helpful suggestions for experiments made by one of the reviewers of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian R. Saunders.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lally, S., Freemont, T.J., Cellesi, F. et al. pH-responsive microgels containing hydrophilic crosslinking co-monomers: shell-exploding microgels through design. Colloid Polym Sci 289, 647–658 (2011). https://doi.org/10.1007/s00396-010-2366-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-010-2366-8

Keywords

Navigation