Skip to main content
Log in

Effects of precipitate agents on temperature-responsive sol–gel transitions of PLGA–PEG–PLGA copolymers in water

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

This paper reports the effects of precipitate agents used in the collection of block copolymers composed of poly(lactic acid-co-glycolic acid) (PLGA) and poly(ethylene glycol) (PEG) on their thermogelling aqueous behaviors. We synthesized PLGA–PEG–PLGA triblock copolymers with a relatively wide distribution of molecular weight (MW) and then separated the crude polymers via three different precipitate agents (diethyl ether, hexane, or methanol). The obtained products exhibited, however, significantly different macroscopic states in water: some were sols, some were precipitates, and some underwent sol–gel transition upon heating. We found that by using different precipitate agents, ingredients of different MW were collected from the synthesized polymers, which accounted for the different states of the separated products in water. Our study strengthens the importance of an appropriate precipitate agent and reveals the subtle balance of hydrophobicity and hydrophilicity in this sort of amphiphilic block copolymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Odian G (1991) Principles of polymerization, 3rd edn. Wiley-Interscience, New York

    Google Scholar 

  2. Zhang Q, Remsen EE, Wooley KL (2000) J Am Chem Soc 122:3642–3651

    Article  CAS  Google Scholar 

  3. Xiang ML, Li XF, Ober CK, Char K, Genzer J, Sivaniah E, Kramer EJ, Fischer DA (2000) Macromolecules 33:6106–6119

    Article  CAS  Google Scholar 

  4. Troll K, Kulkarni A, Wang W, Darko C, Koumba AMB, Laschewsky A, Muller-Buschbaum P, Papadakis CM (2008) Colloid Polym. Sci 286:1079–1092

    CAS  Google Scholar 

  5. Yoshida E, Kuwayama S (2008) Colloid Polym Sci 286:1621–1627

    Article  CAS  Google Scholar 

  6. Loh XJ, Tan YX, Li ZY, Teo LS, Goh SH, Li J (2008) Biomaterials 29:2164–2172

    Article  CAS  Google Scholar 

  7. Lee DS, Shim MS, Kim SW, Lee H, Park I, Chang TY (2001) Macromol Rapid Commun 22:587–592

    Article  CAS  Google Scholar 

  8. Yang J, Jia L, Yin LZ, Yu JY, Shi Z, Fang Q, Cao AM (2004) Macromol Biosci 4:1092–1104

    Article  CAS  Google Scholar 

  9. Kim MS, Seo KS, Khang G, Cho SH, Lee HB (2004) J Polym Sci, Part A: Polym Chem 42:5784–5793

    Article  CAS  Google Scholar 

  10. Bae SJ, Suh JM, Sohn YS, Bae YH, Kim SW, Jeong B (2005) Macromolecules 38:5260–5265

    Article  CAS  Google Scholar 

  11. Lee SJ, Han BR, Park SY, Han DK, Kim SC (2006) J Polym Sci, Part A: Polym Chem 44:888–899

    Article  CAS  Google Scholar 

  12. Shim WS, Kim SW, Lee DS (2006) Biomacromolecules 7:1935–1941

    Article  CAS  Google Scholar 

  13. Dayananda K, Pi BS, Kim BS, Park TG, Lee DS (2007) Polymer 48:758–762

    Article  CAS  Google Scholar 

  14. Hoffman AS (2002) Adv Drug Deliv Rev 54:3–12

    Article  CAS  Google Scholar 

  15. Zhang XZ, Wu DQ, Chu CC (2004) Biomaterials 25:3793–3805

    Article  CAS  Google Scholar 

  16. Zhang Y, Zhu W, Wang BB, Ding JD (2005) J Control Release 105:260–268

    Article  CAS  Google Scholar 

  17. Cheng CJ, Chu LY, Zhang J, Wang HD, Wei G (2008) Colloid Polym Sci 286:571–577

    Article  CAS  Google Scholar 

  18. Wong JE, Diez-Pascual AM, Richtering W (2009) Macromolecules 42:1229–1238

    Article  CAS  Google Scholar 

  19. Lally S, Bird R, Freemont TJ, Saunders BR (2009) Colloid Polym Sci 287:335–343

    Article  CAS  Google Scholar 

  20. Meng ZY, Smith MH, Lyon LA (2009) Colloid Polym Sci 287:277–285

    Article  CAS  Google Scholar 

  21. Kuckling D (2009) Colloid Polym Sci 287:881–891

    Article  CAS  Google Scholar 

  22. Jeong B, Bae YH, Lee DS, Kim SW (1997) Nature 388:860–862

    Article  CAS  Google Scholar 

  23. Nagahama K, Ouchi T, Ohya Y (2008) Adv Funct Mater 18:1220–1231

    Article  CAS  Google Scholar 

  24. Madsen J, Armes SP, Bertal K, Lomas H, MacNeil S, Lewis AL (2008) Biomacromolecules 9:2265–2275

    Article  CAS  Google Scholar 

  25. Cho J, Heuzey MC (2008) Colloid Polym Sci 286:427–434

    Article  CAS  Google Scholar 

  26. Liu RX, Fraylich M, Saunders BR (2009) Colloid Polym Sci 287:627–643

    Article  CAS  Google Scholar 

  27. Yu L, Ding JD (2008) Chem Soc Rev 37:1473–1481

    Article  CAS  Google Scholar 

  28. Joo MK, Park MH, Choi BG, Jeong B (2009) J Mater Chem 19:5891–5905

    Article  CAS  Google Scholar 

  29. Jeong B, Bae YH, Kim SW (1999) Macromolecules 32:7064–7069

    Article  CAS  Google Scholar 

  30. Chenite A, Chaput C, Wang D, Combes C, Buschmann MD, Hoemann CD, Leroux JC, Atkinson BL, Binette F, Selmani A (2000) Biomaterials 21:2155–2161

    Article  CAS  Google Scholar 

  31. Lee BH, Song SC (2004) Macromolecules 37:4533–4537

    Article  CAS  Google Scholar 

  32. Takeuchi Y, Uyama H, Tomoshige N, Watanabe E, Tachibana Y, Kobayasi S (2006) J Polym Sci, Part A: Polym Chem 44:671–675

    Article  CAS  Google Scholar 

  33. Choi YY, Joo MK, Sohn YS, Jeong B (2008) Soft Matter 4:2383–2387

    Article  CAS  Google Scholar 

  34. Zentner GM, Rathi R, Shih C, McRea JC, Seo MH, Oh H, Rhee BG, Mestecky J, Moldoveanu Z, Morgan M, Weitman S (2001) J Control Release 72:203–215

    Article  CAS  Google Scholar 

  35. Qiao MX, Chen DW, Ma XC, Liu YJ (2005) Int J Pharm 294:103–112

    Article  CAS  Google Scholar 

  36. Hou QP, Chau DYS, Pratoomsoot C, Tighe PJ, Dua HS, Shakesheff KM, Rose F (2008) J Pharm Sci 97:3972–3980

    Article  CAS  Google Scholar 

  37. Yu L, Chang GT, Zhang H, Ding JD (2008) Int J Pharm 348:95–106

    Article  CAS  Google Scholar 

  38. DuValla GA, Tarabar D, Seidela RH, Elstad NL, Fowers KD (2009) Anti-Cancer Drugs 20:89–95

    Article  Google Scholar 

  39. Elstad NL, Fowers KD (2009) Adv Drug Deliv Rev 61:785–794

    Article  CAS  Google Scholar 

  40. Zhang H, Yu L, Ding JD (2008) Macromolecules 41:6493–6499

    Article  CAS  Google Scholar 

  41. Yu L, Zhang H, Ding JD (2006) Angew Chem-Int Edit 45:2232–2235

    Article  CAS  Google Scholar 

  42. Chang GT, Yu L, Yang ZG, Ding JD (2009) Polymer 50:6111–6120

    Article  CAS  Google Scholar 

  43. Yu L, Chang GT, Zhang H, Ding JD (2007) J Polym Sci, Part A: Polym Chem 45:1122–1133

    Article  CAS  Google Scholar 

  44. Li YX, Kissel T (1993) J Control Release 27:248–257

    Google Scholar 

  45. Jeong B, Lee DS, Shon JI, Bae YH, Kim SW (1999) J Polym Sci, Part A: Polym Chem 37:751–760

    Article  CAS  Google Scholar 

  46. Chen SB, Pieper R, Webster DC, Singh J (2005) Int J Pharm 288:207–218

    Article  CAS  Google Scholar 

  47. Yang ZG, Ding JD (2008) Macromol Rapid Commun 29:751–756

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The group was supported by the Chinese Ministry of Science and Technology (973 Program No. 2009CB930000), NSF of China (Grants No. 20774020 and No. 50903021), Science and Technology Developing Foundation of Shanghai (Grants No. 074319117 and No. 09ZR1403700), the Specialized Research Fund for the Doctoral Program of Higher Education of China (SRFDP; No. 20090071120014), and Shanghai Education Committee (Project No. B112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiandong Ding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, L., Zhang, H. & Ding, J. Effects of precipitate agents on temperature-responsive sol–gel transitions of PLGA–PEG–PLGA copolymers in water. Colloid Polym Sci 288, 1151–1159 (2010). https://doi.org/10.1007/s00396-010-2246-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-010-2246-2

Keywords

Navigation