Skip to main content
Log in

A conformational investigation of zwitterionic surfactants in the micelle via 13C chemical shift measurements and 2D NOESY spectroscopy

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The conformation and orientation of a series of zwitterionic surfactants (the alkyl-N,N-dimethylammoniopropanesulfonates, or Zwittergent® Detergents) has been studied via 13C chemical shift measurements and 2D NOESY spectroscopy. Chemical shift changes (Δδ values) support the tendency for the intercharge arm to adopt a ring-like orientation as the alkyl chain length increases. Protons of the headgroup regions for both the 8 carbon and the 10 carbon Zwittergent® appear to form a greater number of intermolecular interactions with headgroups of neighboring monomers in the micelle. Interactions between the end of the alkyl chain and the headgroup region of the 12 carbon Zwittergent® are also apparent from examination of the NOESY spectrum indicating that the tail folds back towards the surface of the micelle. These results indicate that a combination of the ring-like conformation of the intercharge arm along with crowding in the vicinity of the sulfonate group could explain why ZW3-12 appears to behave more as a cationic surfactant in previously studied mixed micellar systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tsubone K, Uchida N, Mimura K (1990) J Am Oil Chem Soc 67:451–454

    Article  CAS  Google Scholar 

  2. La Mesa C, Sesta B, Bonicelli MG, Ceccaroni GF (1990) Langmuir 6:728–731

    Article  Google Scholar 

  3. Sesta B (1989) J Phys Chem 93:7677–7680. doi:10.1021/j100359a029

    Article  CAS  Google Scholar 

  4. Tsubone K, Uchida N, Niwase H, Honda K (1989) J Am Oil Chem Soc 66:829–833

    Article  CAS  Google Scholar 

  5. Hidaka H, Moriya M, Takai M (1979) J Am Oil Chem Soc 56:914–917

    Article  CAS  Google Scholar 

  6. Ernst R, Miller EJ (1982) Surface-active betaines. In: Bluestein BR, Hilton CL (eds) Amphoteric surfactants: surfactant science series. Marcel Dekker, New York

    Google Scholar 

  7. Zajac J, Chorro C, Lindheimer M, Partyka S (1997) Langmuir 13:1486–1495. doi:10.1021/la960926d

    Article  CAS  Google Scholar 

  8. Li F, Li G, Chen J (1998) Colloids Surf Physicochem Eng Aspects 145:167–174. doi:10.1016/S0927-7757(98)00543-3

    Article  CAS  Google Scholar 

  9. McLachlan AA, Marangoni DG (2006) J Colloid Interface Sci 295:243–248. doi:10.1016/j.jcis.2005.08.008

    Article  CAS  Google Scholar 

  10. Mullally MK, Marangoni DG (2004) Can J Chem 82:1223. doi:10.1139/v04-022

    Article  CAS  Google Scholar 

  11. Yokoyama T, Murakami G, Akashi H, Zenki M (2004) Analytical Sciences X-ray Structure Analysis Online 20:805–806. doi:10.2116/analscix.20.x31

    Article  Google Scholar 

  12. Boucher GD, MacDonald AC, Hawrylak BE, Marangoni DG (1998) Can J Chem 76:1266–1273

    Article  CAS  Google Scholar 

  13. Soderman O, Stilbs P, Price WS (2004) Concepts Magn Reson Part A 23A:121–135. doi:10.1002/cmr.a.20022

    Article  CAS  Google Scholar 

  14. Mazumdar S (1990) J Phys Chem 94:5947–5953. doi:10.1021/j100378a062

    Article  CAS  Google Scholar 

  15. Chachaty C (1987) Progess in NMR Spectroscopy 19:183–222. doi:10.1016/0079-6565(87)80002-X

    Article  CAS  Google Scholar 

  16. Brycki B, Szafran M (1992) Magn Reson Chem 30:535–543. doi:10.1002/mrc.1260300614

    Article  CAS  Google Scholar 

  17. Persson B, Drakenberg T, Lindman B (1979) J Phys Chem 83:3011–3015. doi:10.1021/j100486a015

    Article  CAS  Google Scholar 

  18. Cheney BV, Grant DM (1967) J Am Chem Soc 89:5319–5327

    Article  CAS  Google Scholar 

  19. Corno C, Platone E, Ghelli S (1984) Colloid Polym Sci 262:667–669

    Article  CAS  Google Scholar 

  20. Desando M, McGarvey B, Reeves L (1996) J Colloid Interface Sci 181:331–336. doi:10.1006/jcis.1996.0386

    Article  CAS  Google Scholar 

  21. Gjerde MI, Nerdal W, Hoiland H (1996) J Colloid Interface Sci 183:285–288

    Article  CAS  Google Scholar 

  22. Landry J, Marangoni DG, Arden D, MacLennan I, Kwak JCT (2009) 12:155–164

  23. Marangoni DG, Landry JM, Lumsden MD, Berno R (2007) Can J Chem 85:202–207. doi:10.1139/V07-018

    Article  CAS  Google Scholar 

  24. Hawrylak BE, Marangoni DG (1999) Can J Chem 77:1241–1244

    Article  CAS  Google Scholar 

  25. Mao SZ, Du YR (2003) Acta Physico-Chimica Sinica 19:675–680

    CAS  Google Scholar 

  26. Gao HC, Zhao S, Mao SZ, Yuan HZ, Yu JY, Shen LF, Du YR (2002) J Colloid Interface Sci 249:200–208

    Article  CAS  Google Scholar 

  27. Yuan HZ, Luo L, Zhang L, Zhao S, Mao SZ, Yu JY, Shen LF, Du YR (2002) Colloid Polym Sci 280:479–484

    Article  CAS  Google Scholar 

  28. Soderman O, Guering P (1987) Colloid Polym Sci 265:76–82. doi:10.1007/BF01422668

    Article  Google Scholar 

  29. Ahlnäs T, Söderman O (1984) Colloids Surf 12:125–135. doi:10.1016/0166-6622(84)80094-3

    Article  Google Scholar 

  30. Griffin RG, Powers L, Pershan PS (1978) Biochemistry (N Y) 17:2718–2722

    Article  CAS  Google Scholar 

  31. Faucompre B, Bouzerda M, Lindheimer M, Douillard JM, Partyka S (1994) J Therm Anal 41:1325–1333

    Article  CAS  Google Scholar 

  32. Faucompre B, Lindman B (1987) J Phys Chem 91:383–389

    Article  CAS  Google Scholar 

  33. Wüthrich K, Anonymous (1986) NMR of proteins and nucleic acids. Wiley, New York

    Google Scholar 

  34. Nelson JH (2003) Nuclear magnetic resonance spectroscopy. Pearson, Toronto

    Google Scholar 

  35. Rosen MJ (2004) Surfactants and interfacial phenomena, 3rd edn. Wiley, Hoboken, NJ

    Google Scholar 

Download references

Acknowledgments

The authors thank NSERC (Discovery Grant, D.G.M; Research Capacity Development Grant, StFX), the Atlantic Innovation Fund, and the StFX University Council for Research for financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Gerrard Marangoni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McLachlan, A.A., Singh, K. & Marangoni, D.G. A conformational investigation of zwitterionic surfactants in the micelle via 13C chemical shift measurements and 2D NOESY spectroscopy. Colloid Polym Sci 288, 653–663 (2010). https://doi.org/10.1007/s00396-009-2182-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-009-2182-1

Keywords

Navigation