Colloid and Polymer Science

, 287:1295 | Cite as

Polypeptide hybrid copolymers as selective micellar nanocarriers in nonaqueous media

  • Guillermo Orts Gil
  • Sylvain Prévost
  • Magdalena Łosik
  • Florian Hermes
  • Helmut SchlaadEmail author
  • Thomas HellwegEmail author
Original Contribution


The self-assembly of polystyrene-block-poly(l-lysine) (PS-PLLys·HCl) copolymers with different block lengths has been studied in toluene. The obtained spherical micelles exhibit size variations upon addition of acids or bases, as indicated by light and neutron scattering studies. It is shown that pyridine induces a shrinking of the polystyrene chains in the corona region of the micelles, decreasing the aggregate solvent interface. The addition of benzoic acid, on the other hand, leads to a swelling of the copolymer micelles proportional to the molar fraction of polypeptide. This behavior suggests a selective permeability of the PS-PLLys micelles and the possibility to encapsulate organic compounds in toluene depending on their chemical nature.


Block copolymer Biohybrid SANS DLS 



We wish to thank the DFG (Sfb 448, TP A12, and BIOSONS) for financial support. T.H. also would like to acknowledge financial support from the Sfb 481 (TP A15).


  1. 1.
    Förster S (1997) Amphiphilic block copolymers. Ber. Bunsenges. Phys Chem 101(11):1671–1678Google Scholar
  2. 2.
    Bahadur P (2001) Block copolymers—their microdomain formation (in solid state) and surfactant behaviour (in solution). Curr Sci 80:1002–1007Google Scholar
  3. 3.
    Langevin D (1992) Micelles and microemulsions. Annu Rev Phys Chem 43:341–369CrossRefGoogle Scholar
  4. 4.
    Jakobs B, Sottmann T, Strey R, Allgaier J, Willner L, Richter D (1999) Amphiphilic block copolymers as efficiency boosters for microemulsions. Langmuir 15:6707–6711CrossRefGoogle Scholar
  5. 5.
    Endo H, Mihailescu M, Monkenbusch M, Allgaier J, Gompper G, Richter D, Jakobs B, Strey R, Grillo I (2001) Effect of amphiphilic block copolymers on the structure and phase behavior of oil-water-surfactant mixtures. J Chem Phys 115(1):580–600CrossRefGoogle Scholar
  6. 6.
    Holderer O, Frielinghaus H, Byelov D, Monkenbusch M, Allgaier J, Richter D (2005) Dynamic properties of microemulsions modified with homopolymers and diblock copolymers: the determination of bending moduli and renormalization effects. J Chem Phys 122:094908CrossRefGoogle Scholar
  7. 7.
    Monnier A, Schüth F, Huo Q, Kumar D, Margolese D, Maxwell RS, Stucky GD, Krishnamurty M, Petroff P, Firouzi A, Janicke M, Chmelka BF (1993) Cooperative formation of inorganic–organic interfaces in the synthesis of silicate mesostructures. Science 261:1299–1303CrossRefGoogle Scholar
  8. 8.
    Hecht E, Hoffmann H (1994) Interaction of ABA block copolymers with ionic surfactants in aqueous solution. Langmuir 10:86–91CrossRefGoogle Scholar
  9. 9.
    Nordskog A, Egger H, Findenegg GH, Hellweg Th, Schlaad H, von Berlepsch H, Böttcher C (2003) Structural changes of diblock PB40 PEO62 -copolymer micelles induced by addition of low molecular weight surfactants: Scattering and cryo-TEM studies. Phys Rev E 68:11406CrossRefGoogle Scholar
  10. 10.
    Fütterer T, Hellweg Th, Findenegg GH, Frahn J, Schlüter AD, Böttcher C (2003) Self-assembled structures formed by amphiphilic polyparaphenylenes in the bulk, at the water/air interface and in non-ionic surfactant solutions. Langmuir 19:6537–6544CrossRefGoogle Scholar
  11. 11.
    Nordskog A, Fütterer T, Schlaad H, Heinemann A, von Berlepsch H, Böttcher C, Hellweg Th (2004) Formation of mixed micelles of PB40PEO62 and the anionic surfactant SDS in aqueous solution. Phys Chem Chem Phys 6:3123–3129CrossRefGoogle Scholar
  12. 12.
    Bates FS, Fredrickson GH (1990) Block copolymer thermodynamics: theory and experiment. Annu Rev Phys Chem 41:525–557CrossRefGoogle Scholar
  13. 13.
    Gil ES, Hudson SM (2004) Stimuli-responsive polymers and their bioconjugates. Prog Polym Sci 29(12):1173–1222CrossRefGoogle Scholar
  14. 14.
    Lecommandoux S, Achard M-F, Langenwalter JF, Klok H-A (2001) Self-assembly of rod-coil diblock oligomers based on α-helical peptides. Macromolecules 34:9100–9111CrossRefGoogle Scholar
  15. 15.
    Matsumura Y (2008) Poly (amino acid) micelle nanocarriers in preclinical and clinical studies. Advanced Drug Delivery Reviews 60:899–914CrossRefGoogle Scholar
  16. 16.
    Ponsinet V, Fabre P (1996) Flexibility of the membranes in a doped swollen lamellar phase. J Phys Chem 100:5035–5038CrossRefGoogle Scholar
  17. 17.
    Wang Y, Chang Y (2003) Synthesis and conformational transition of surface-tethered polypeptide: poly(l-lysine). Macromolecules 26:6511–6518CrossRefGoogle Scholar
  18. 18.
    Sigel R, Losik M, Schlaad H (2007) pH responsiveness of block copolymer vesicles with a polypeptide corona. Langmuir 23:7196–7199CrossRefGoogle Scholar
  19. 19.
    Orts Gil G, Losik M, Schlaad H, Hellweg T (2008) Properties of pH-responsive mixed aggregates of polystyrene-block-poly(l-lysine) and nonionic surfactant in solution and adsorbed at a solid surface. Langmuir 24:12823–12828CrossRefGoogle Scholar
  20. 20.
    Schlaad H, Smarsly B, Losik M (2004) The role of chain-length distribution in the formation of solid-state structures of polypeptide-based rod-coil block copolymers. Macromolecules 37:2210–2214CrossRefGoogle Scholar
  21. 21.
    Berne BJ, Pecora R (1976) Dynamic light scattering. Wiley, New YorkGoogle Scholar
  22. 22.
    Provencher SW (1982) A constrained regularization method for inverting data represented by linear algebraic or integral equations. Comput Phys Com 27:213–217CrossRefGoogle Scholar
  23. 23.
    Hellweg T, Brûlet A, Sottmann T (2000) Dynamics in an oil-continuous droplet microemulsions as seen by quasielastic scattering techniques. Phys Chem Chem Phys 2(22):5168–5174CrossRefGoogle Scholar
  24. 24.
    Provencher SW (1976) A Fourier method for the analysis of exponential decay curves. Biophys J 16:27–41CrossRefGoogle Scholar
  25. 25.
    Provencher SW (1982) CONTIN: a general purpose constrained regularization program for inverting noisy linear algebraic and integral equations. Comput Phys Com 27:229–242CrossRefGoogle Scholar
  26. 26.
    Einstein A (1956) Investigation on the theory of the Brownian movement. Dover, New YorkGoogle Scholar
  27. 27.
    Thomas JC (1987) The determination of log normal particle size distributions by dynamic light scattering. J Colloid Interf Sci 117:187–192CrossRefGoogle Scholar
  28. 28.
    Diamond S, Dolch W (1972) Generalized log-normal distribution of pore sizes in hydrated cement paste. J Colloid Interface Sci 38:234–244CrossRefGoogle Scholar
  29. 29.
    Rübe A, Hause G, Mäder K, Kohlbrecher J (2005) Core-shell structure of Miglyol/poly(d, l-lactide)/poloxamer nanocapsules studied by small-angle neutron scattering. J Controlled Release 107:244–252CrossRefGoogle Scholar
  30. 30.
    Mes E, Kok W, Poppe H, Tijssen R (1999) Comparison of methods for the determination of diffusion coefficients of polymers in dilute solutions the influence of polydispersity. J Polymer Sci Part B: Polym Phys 37:593–603CrossRefGoogle Scholar
  31. 31.
    Vink H (1985) Mutual diffusion and self-diffusion in the frictional formalism of non-equilibrium thermodynamics. J Chem Soc Faraday Trans I 81:1725–1730CrossRefGoogle Scholar
  32. 32.
    Evans D, Wennerström H (1994) The colloidal domain: where physics, chemistry, biology, and technology meet. VCH, New YorkGoogle Scholar
  33. 33.
    Bachman M (1999) RCA-1 silicon wafer cleaning. Technical report, INRF, CaliforniaGoogle Scholar
  34. 34.
    Keiderling U (2002) The new BerSANS-PC software for reduction and treatment of small angle neutron scattering data. Appl Phys A Mater Sci Process 74:1455–1457CrossRefGoogle Scholar
  35. 35.
    Guinier A, Fournet G (1955) Small-angle scattering of X-rays. Wiley, New YorkGoogle Scholar
  36. 36.
    Glatter O, Kratky O (1982) Small angle X-ray scattering. Academic, LondonGoogle Scholar
  37. 37.
    de Gennes P-G (1979) Scaling concepts in polymer physics. Cornell University Press, IthacaGoogle Scholar
  38. 38.
    Hellweg Th, Schemmel S, Rother G, Brûlet A, Eckerlebe H, Findenegg GH (2003) Demixing dynamics of a binary liquid mixture in a controlled pore glass. Eur Phys J E 12:S1–S4CrossRefGoogle Scholar
  39. 39.
    Pedersen JS, Gerstenberg MC (1996) Scattering form factor of block copolymer micelles. Macromolecules 29:1363–1365CrossRefGoogle Scholar
  40. 40.
    Kohlbrecher J (2008) SASfit: a program for fitting simple structural models to small angle scattering data. Paul Scherrer Institut, Laboratory for Neutron Scattering, VilligenGoogle Scholar
  41. 41.
    Svaneborg C, Pedersen JS (2001) Block copolymer micelle coronas as quasi-two-dimensional dilute or semidilute polymer solutions. Phys. Rev. E 64(1):10802–10805CrossRefGoogle Scholar
  42. 42.
    Iatrou H, Hadjichristidis N, Meier G, Frielinghaus H, Monken-busch M (2002) Synthesis and characterization of model cyclic block copolymers of styrene and butadiene. Comparison of the aggregation phenomena in selective solvents with linear diblock and triblock analogues. Macro-molecules 35(14):5426–5437Google Scholar
  43. 43.
    Khlebtsov NG (2003) On the dependence of the light scattering intensity on the averaged size of polydisperse particles: comments on the paper by M. S. Dyuzheva et al. (Colloid J2002, vol. 64, no. 1, p. 39). Colloid Journal 65(5):652–655CrossRefGoogle Scholar
  44. 44.
    Burchard W, Richtering W (1989) Dynamic light scattering from polymer solutions. Prog Colloid Polymer Sci 80:151–163CrossRefGoogle Scholar
  45. 45.
    Orts Gil G (2008) Self-assembly and dynamics of complex amphiphilic systems: from block copolymers to phospholipids. Ph.D. thesis, Technische Univer-sität Berlin, Stranski-Laboratorium für Physikalische Chemie, Berlin.Google Scholar
  46. 46.
    Sun T, Teja A (2004) Density, viscosity, and thermal conductivity of aqueous benzoic acid mixtures between 375 K and 465 K. J Chem Eng Data 49:1843–1846CrossRefGoogle Scholar
  47. 47.
    Chipman J (1924) The solubility of benzoic acid in benzene and in toluene. J Am Chem Soc 46:2445–2448CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Guillermo Orts Gil
    • 1
    • 5
  • Sylvain Prévost
    • 1
    • 3
  • Magdalena Łosik
    • 2
  • Florian Hermes
    • 2
  • Helmut Schlaad
    • 2
    Email author
  • Thomas Hellweg
    • 4
    Email author
  1. 1.Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für ChemieTechnische Universität BerlinBerlinGermany
  2. 2.Max-Planck-Institut für Kolloid-und GrenzflächenforschungWissenschaftspark GolmPotsdamGermany
  3. 3.Helmholtz-Zentrum-BerlinBerlinGermany
  4. 4.Universität Bayreuth, Physikalische Chemie I, Universitätsstr. 30BayreuthGermany
  5. 5.Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87BerlinGermany

Personalised recommendations