Skip to main content
Log in

Polypeptide hybrid copolymers as selective micellar nanocarriers in nonaqueous media

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The self-assembly of polystyrene-block-poly(l-lysine) (PS-PLLys·HCl) copolymers with different block lengths has been studied in toluene. The obtained spherical micelles exhibit size variations upon addition of acids or bases, as indicated by light and neutron scattering studies. It is shown that pyridine induces a shrinking of the polystyrene chains in the corona region of the micelles, decreasing the aggregate solvent interface. The addition of benzoic acid, on the other hand, leads to a swelling of the copolymer micelles proportional to the molar fraction of polypeptide. This behavior suggests a selective permeability of the PS-PLLys micelles and the possibility to encapsulate organic compounds in toluene depending on their chemical nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Förster S (1997) Amphiphilic block copolymers. Ber. Bunsenges. Phys Chem 101(11):1671–1678

    Google Scholar 

  2. Bahadur P (2001) Block copolymers—their microdomain formation (in solid state) and surfactant behaviour (in solution). Curr Sci 80:1002–1007

    CAS  Google Scholar 

  3. Langevin D (1992) Micelles and microemulsions. Annu Rev Phys Chem 43:341–369

    Article  CAS  Google Scholar 

  4. Jakobs B, Sottmann T, Strey R, Allgaier J, Willner L, Richter D (1999) Amphiphilic block copolymers as efficiency boosters for microemulsions. Langmuir 15:6707–6711

    Article  CAS  Google Scholar 

  5. Endo H, Mihailescu M, Monkenbusch M, Allgaier J, Gompper G, Richter D, Jakobs B, Strey R, Grillo I (2001) Effect of amphiphilic block copolymers on the structure and phase behavior of oil-water-surfactant mixtures. J Chem Phys 115(1):580–600

    Article  CAS  Google Scholar 

  6. Holderer O, Frielinghaus H, Byelov D, Monkenbusch M, Allgaier J, Richter D (2005) Dynamic properties of microemulsions modified with homopolymers and diblock copolymers: the determination of bending moduli and renormalization effects. J Chem Phys 122:094908

    Article  Google Scholar 

  7. Monnier A, Schüth F, Huo Q, Kumar D, Margolese D, Maxwell RS, Stucky GD, Krishnamurty M, Petroff P, Firouzi A, Janicke M, Chmelka BF (1993) Cooperative formation of inorganic–organic interfaces in the synthesis of silicate mesostructures. Science 261:1299–1303

    Article  CAS  Google Scholar 

  8. Hecht E, Hoffmann H (1994) Interaction of ABA block copolymers with ionic surfactants in aqueous solution. Langmuir 10:86–91

    Article  CAS  Google Scholar 

  9. Nordskog A, Egger H, Findenegg GH, Hellweg Th, Schlaad H, von Berlepsch H, Böttcher C (2003) Structural changes of diblock PB40 PEO62 -copolymer micelles induced by addition of low molecular weight surfactants: Scattering and cryo-TEM studies. Phys Rev E 68:11406

    Article  Google Scholar 

  10. Fütterer T, Hellweg Th, Findenegg GH, Frahn J, Schlüter AD, Böttcher C (2003) Self-assembled structures formed by amphiphilic polyparaphenylenes in the bulk, at the water/air interface and in non-ionic surfactant solutions. Langmuir 19:6537–6544

    Article  Google Scholar 

  11. Nordskog A, Fütterer T, Schlaad H, Heinemann A, von Berlepsch H, Böttcher C, Hellweg Th (2004) Formation of mixed micelles of PB40PEO62 and the anionic surfactant SDS in aqueous solution. Phys Chem Chem Phys 6:3123–3129

    Article  CAS  Google Scholar 

  12. Bates FS, Fredrickson GH (1990) Block copolymer thermodynamics: theory and experiment. Annu Rev Phys Chem 41:525–557

    Article  CAS  Google Scholar 

  13. Gil ES, Hudson SM (2004) Stimuli-responsive polymers and their bioconjugates. Prog Polym Sci 29(12):1173–1222

    Article  CAS  Google Scholar 

  14. Lecommandoux S, Achard M-F, Langenwalter JF, Klok H-A (2001) Self-assembly of rod-coil diblock oligomers based on α-helical peptides. Macromolecules 34:9100–9111

    Article  CAS  Google Scholar 

  15. Matsumura Y (2008) Poly (amino acid) micelle nanocarriers in preclinical and clinical studies. Advanced Drug Delivery Reviews 60:899–914

    Article  CAS  Google Scholar 

  16. Ponsinet V, Fabre P (1996) Flexibility of the membranes in a doped swollen lamellar phase. J Phys Chem 100:5035–5038

    Article  CAS  Google Scholar 

  17. Wang Y, Chang Y (2003) Synthesis and conformational transition of surface-tethered polypeptide: poly(l-lysine). Macromolecules 26:6511–6518

    Article  Google Scholar 

  18. Sigel R, Losik M, Schlaad H (2007) pH responsiveness of block copolymer vesicles with a polypeptide corona. Langmuir 23:7196–7199

    Article  CAS  Google Scholar 

  19. Orts Gil G, Losik M, Schlaad H, Hellweg T (2008) Properties of pH-responsive mixed aggregates of polystyrene-block-poly(l-lysine) and nonionic surfactant in solution and adsorbed at a solid surface. Langmuir 24:12823–12828

    Article  Google Scholar 

  20. Schlaad H, Smarsly B, Losik M (2004) The role of chain-length distribution in the formation of solid-state structures of polypeptide-based rod-coil block copolymers. Macromolecules 37:2210–2214

    Article  CAS  Google Scholar 

  21. Berne BJ, Pecora R (1976) Dynamic light scattering. Wiley, New York

    Google Scholar 

  22. Provencher SW (1982) A constrained regularization method for inverting data represented by linear algebraic or integral equations. Comput Phys Com 27:213–217

    Article  Google Scholar 

  23. Hellweg T, Brûlet A, Sottmann T (2000) Dynamics in an oil-continuous droplet microemulsions as seen by quasielastic scattering techniques. Phys Chem Chem Phys 2(22):5168–5174

    Article  CAS  Google Scholar 

  24. Provencher SW (1976) A Fourier method for the analysis of exponential decay curves. Biophys J 16:27–41

    Article  CAS  Google Scholar 

  25. Provencher SW (1982) CONTIN: a general purpose constrained regularization program for inverting noisy linear algebraic and integral equations. Comput Phys Com 27:229–242

    Article  Google Scholar 

  26. Einstein A (1956) Investigation on the theory of the Brownian movement. Dover, New York

    Google Scholar 

  27. Thomas JC (1987) The determination of log normal particle size distributions by dynamic light scattering. J Colloid Interf Sci 117:187–192

    Article  CAS  Google Scholar 

  28. Diamond S, Dolch W (1972) Generalized log-normal distribution of pore sizes in hydrated cement paste. J Colloid Interface Sci 38:234–244

    Article  CAS  Google Scholar 

  29. Rübe A, Hause G, Mäder K, Kohlbrecher J (2005) Core-shell structure of Miglyol/poly(d, l-lactide)/poloxamer nanocapsules studied by small-angle neutron scattering. J Controlled Release 107:244–252

    Article  Google Scholar 

  30. Mes E, Kok W, Poppe H, Tijssen R (1999) Comparison of methods for the determination of diffusion coefficients of polymers in dilute solutions the influence of polydispersity. J Polymer Sci Part B: Polym Phys 37:593–603

    Article  CAS  Google Scholar 

  31. Vink H (1985) Mutual diffusion and self-diffusion in the frictional formalism of non-equilibrium thermodynamics. J Chem Soc Faraday Trans I 81:1725–1730

    Article  CAS  Google Scholar 

  32. Evans D, Wennerström H (1994) The colloidal domain: where physics, chemistry, biology, and technology meet. VCH, New York

    Google Scholar 

  33. Bachman M (1999) RCA-1 silicon wafer cleaning. Technical report, INRF, California

  34. Keiderling U (2002) The new BerSANS-PC software for reduction and treatment of small angle neutron scattering data. Appl Phys A Mater Sci Process 74:1455–1457

    Article  Google Scholar 

  35. Guinier A, Fournet G (1955) Small-angle scattering of X-rays. Wiley, New York

    Google Scholar 

  36. Glatter O, Kratky O (1982) Small angle X-ray scattering. Academic, London

    Google Scholar 

  37. de Gennes P-G (1979) Scaling concepts in polymer physics. Cornell University Press, Ithaca

    Google Scholar 

  38. Hellweg Th, Schemmel S, Rother G, Brûlet A, Eckerlebe H, Findenegg GH (2003) Demixing dynamics of a binary liquid mixture in a controlled pore glass. Eur Phys J E 12:S1–S4

    Article  CAS  Google Scholar 

  39. Pedersen JS, Gerstenberg MC (1996) Scattering form factor of block copolymer micelles. Macromolecules 29:1363–1365

    Article  CAS  Google Scholar 

  40. Kohlbrecher J (2008) SASfit: a program for fitting simple structural models to small angle scattering data. Paul Scherrer Institut, Laboratory for Neutron Scattering, Villigen

    Google Scholar 

  41. Svaneborg C, Pedersen JS (2001) Block copolymer micelle coronas as quasi-two-dimensional dilute or semidilute polymer solutions. Phys. Rev. E 64(1):10802–10805

    Article  CAS  Google Scholar 

  42. Iatrou H, Hadjichristidis N, Meier G, Frielinghaus H, Monken-busch M (2002) Synthesis and characterization of model cyclic block copolymers of styrene and butadiene. Comparison of the aggregation phenomena in selective solvents with linear diblock and triblock analogues. Macro-molecules 35(14):5426–5437

    CAS  Google Scholar 

  43. Khlebtsov NG (2003) On the dependence of the light scattering intensity on the averaged size of polydisperse particles: comments on the paper by M. S. Dyuzheva et al. (Colloid J2002, vol. 64, no. 1, p. 39). Colloid Journal 65(5):652–655

    Article  CAS  Google Scholar 

  44. Burchard W, Richtering W (1989) Dynamic light scattering from polymer solutions. Prog Colloid Polymer Sci 80:151–163

    Article  CAS  Google Scholar 

  45. Orts Gil G (2008) Self-assembly and dynamics of complex amphiphilic systems: from block copolymers to phospholipids. Ph.D. thesis, Technische Univer-sität Berlin, Stranski-Laboratorium für Physikalische Chemie, Berlin.

  46. Sun T, Teja A (2004) Density, viscosity, and thermal conductivity of aqueous benzoic acid mixtures between 375 K and 465 K. J Chem Eng Data 49:1843–1846

    Article  CAS  Google Scholar 

  47. Chipman J (1924) The solubility of benzoic acid in benzene and in toluene. J Am Chem Soc 46:2445–2448

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank the DFG (Sfb 448, TP A12, and BIOSONS) for financial support. T.H. also would like to acknowledge financial support from the Sfb 481 (TP A15).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Helmut Schlaad or Thomas Hellweg.

Appendices

Appendix A: additional sample parameters

Average molecular volumes of the polymers and the PLLys and PS blocks are displayed in Table 4. Assuming monomeric micelles with a dense PLLys core and a PS shell, the PLLys cores having volumes lying between 12 and 30 nm3 would fit into spheres of radii between 1.4 and 2 nm, and the whole “dry” polymer would fit into spheres of radii between 2.4 and 2.9 nm.

Table 4 Composition of the PS-b-PLLys copolymers 1-3. n is the average number of repeat units, v is the molecular volume or volume fraction, and m is the mass fraction

Appendix B: scattering length densities and molecular volumes

The values from Table 5 were used for the fits. From Tables 4 and 5, we can calculate the average SLD of the whole polymers, at 1.31, 1.25, and 1.27·10 l0 cm−2. The average value of 1.3·10 l0 cm−2 will be used.

Table 5 Scattering length densities (SLD) and apparent molecular volumes (v m ) of the materials

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orts Gil, G., Prévost, S., Łosik, M. et al. Polypeptide hybrid copolymers as selective micellar nanocarriers in nonaqueous media. Colloid Polym Sci 287, 1295–1304 (2009). https://doi.org/10.1007/s00396-009-2096-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-009-2096-y

Keywords

Navigation