Skip to main content
Log in

Fast synthesis of optically active polyamides containing l-methionine linkages in ionic liquid via a microwave-assisted process

  • Short Communication
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Several optically active aromatic polyamides have been synthesized via direct polycondensation of chiral diacid monomer 1 containing l-methionine moiety with diverse aromatic diamines 2a–2h in a green medium, namely 1,3-dipropylimidazolium bromide as a room temperature ionic liquid. In order to evaluate the advantages of microwave promotion of these polymerization reactions, we compared microwave irradiation (method I) with conventional oil bath heating (method II) by means of reaction rates, conversions, and inherent viscosities. The inherent viscosities of resulting polymers were ranging between 0.47–0.65 and 0.35–0.57 dL/g in methods I and II, respectively. These polymers were characterized by means of 1H-NMR, FT-IR, elemental, organosolubility, differential scanning calorimetry, and thermal gravimetric analysis techniques. The obtained polymers show thermal stability up to 273 °C under nitrogen atmosphere and good solubility in polar organic solvents. Polymerization reactions proceeded in higher yields and moderate inherent viscosities under microwave irradiation conditions besides the dramatically shorter reaction times and achieving the more pure products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

References

  1. Sanes J, Carrion FJ, Bermudez MD, Martinez-Nicolas M (2006) Tribol Lett 21:121–133

    Article  CAS  Google Scholar 

  2. Benavente J, Canas A (1999) J Membr Sci 156:241–250

    Article  CAS  Google Scholar 

  3. Mallakpour S, Kowsari E (2005) Polym Bull 53:169–180

    Article  CAS  Google Scholar 

  4. Li Y, Wang XL, Yang KK, Wang YZ (2006) Polym Bull 57:873–880

    Article  CAS  Google Scholar 

  5. Singh AK, Raykar VS (2008) Colloid Polym Sci 286:1667–1673

    Article  CAS  Google Scholar 

  6. Klun U, Krzan A (2000) Polymer 41:4361–4365

    Article  CAS  Google Scholar 

  7. Liao L, Zhang C, Gong S (2007) Macromol Chem Phys 208:1301–1309

    Article  CAS  Google Scholar 

  8. Imai Y, Nemoto H, Kakimoto MA (1996) J Polym Sci Part A: Polym Chem 34:701–704

    Article  CAS  Google Scholar 

  9. Li Q, Yang X, Chen W, Yi C, Xu Z (2008) Macromol Symp 261:148–156

    Article  CAS  Google Scholar 

  10. Yang XG, Liu LJ (2008) Polym Bull 61:177–188

    Article  CAS  Google Scholar 

  11. Mallakpour S, Rafiee Z (2009) React Funct Polym 69:252–258

    Article  CAS  Google Scholar 

  12. Mallakpour S, Sepehri S (2008) React Funct Polym 68:1459–1466

    Article  CAS  Google Scholar 

  13. Mallakpour S, Rafiee Z (2008) Iranian Polym J 17:907–935

    CAS  Google Scholar 

  14. Fletcher KA, Pandey S, Storey IK, Hendricks AE, Pandey S (2002) Anal chim Acta 435:89–96

    Article  Google Scholar 

  15. Matsumoto M, Mochiduki K, Kondo K (2004) J Biosci Bioeng 98:344–347

    CAS  Google Scholar 

  16. Crosthwaite JM, Aki SNVK, Maginn EJ, Brennecke JF (2005) Floid Phase Equilib 228:303–309

    Article  Google Scholar 

  17. Matsumoto M, Ohtani T, Kondo K (2007) J Membr Sci 289:92–96

    Article  CAS  Google Scholar 

  18. Matsuda T, Mishima Y, Azizian S, Matsubara H, Takiue T, Aratono M (2007) Colloid Polym Sci 285:1601–1605

    Article  CAS  Google Scholar 

  19. Fu C, Zhou H, Wu H, Chen J, Kuang Y (2008) Colloid Polym Sci 286:1499–1504

    Article  CAS  Google Scholar 

  20. Li N, Zhang S, Li X, Yu L, Zheng L (2009) Colloid Polym Sci 287:103–108

    Article  CAS  Google Scholar 

  21. Shaabani A, Farhangi E, Rahmati A (2008) Appl Catal A: Gen 338:14–19

    Article  CAS  Google Scholar 

  22. Kim JW, Kim JH, Lee DH, Lee YS (2006) Tetrahedron Lett 47:4745–4748

    Article  CAS  Google Scholar 

  23. Jain N, Kumar A, Chauhan S, Chauhan SMS (2005) Tetrahedron 61:1015–1060

    Article  CAS  Google Scholar 

  24. Lu J, Yan F, Texter J (2009) Prog Polym Sci 34:431–448

    Article  CAS  Google Scholar 

  25. Welton T (2004) Coordin Chem Rev 248:2459–2477

    Article  CAS  Google Scholar 

  26. Ding S, Radosz M, SHen Y (2005) Macromolecules 38:5921–5928

    Article  CAS  Google Scholar 

  27. Zhang H, Hong K, Mays JW (2004) Polym Bull 52:9–16

    Article  CAS  Google Scholar 

  28. Gallagher MM, Rooney AD, Rooney JJ (2009) J mol Catal A: Chem 303:78–83

    Article  CAS  Google Scholar 

  29. Andrzejewska E, Podgorska-Golubska M, Stepniak I, Andrzejewski M (2009) Polymer 50:2040–2047

    Article  CAS  Google Scholar 

  30. Liu S, Xie C, Yu S, Liu F (2009) Catal Commun 10:986–988

    Article  CAS  Google Scholar 

  31. Gies AP, Nonidez WK (2004) Anal Chem 76:1991–1997

    Article  CAS  Google Scholar 

  32. Abid S, El Gharbi R, Gandini A (2004) Polymer 45:6469–6478

    Article  CAS  Google Scholar 

  33. Yoshioka Y, Asao K, Yamamoto K, Tachi H (2007) Colloid Polym Sci 285:535–541

    Article  CAS  Google Scholar 

  34. Zulfiqar S, Ahmad Z, Sarwar MI (2007) Colloid Polym Sci 285:1749–1754

    Article  CAS  Google Scholar 

  35. Zulfiqar S, Rafique M, Shaukat MS, Ishaq M, Sarwar MI (2009) Colloid Polym Sci 287:715–723. doi:10.1007//s00396-009-2011-6

    Article  CAS  Google Scholar 

  36. Yang CP, Su YY, Hsu MY (2006) Colloid Polym Sci 284:990–1000

    Article  CAS  Google Scholar 

  37. Spiliopoulos IK, Mikroyannidis JA (1998) Macromolecules 31:515–521

    Article  CAS  Google Scholar 

  38. Kim YJ, Chung IS, IN I, Kim SY (2005) Polymer 46:3992–4004

    CAS  Google Scholar 

  39. Hashimoto T (1990) Macromolecules 23:2830–2836

    Article  Google Scholar 

  40. Mallakpour S, Moghaddam E (2006) Polym Bull 56:339–347

    Article  CAS  Google Scholar 

  41. Mallakpour S, Rafiemanzelat F (2005) React Funct Polym 62:153–167

    Article  CAS  Google Scholar 

  42. Mallakpour S, Seyedjamali H (2008) Amino Acids 34:531–538

    Article  CAS  Google Scholar 

  43. Mallakpour S, Kowsari E (2006) Iranian Polym J 15:239–247

    CAS  Google Scholar 

  44. Mallakpour S, Rafiee Z (2008) Polymer 49:3007–3013

    Article  CAS  Google Scholar 

  45. Liaw DJ, Huang CC, Chen WH (2006) Polymer 47:2337–2348

    Article  CAS  Google Scholar 

  46. Hsiao SH, Chang YH (2004) Eur Polym J 40:1749–1757

    Article  CAS  Google Scholar 

  47. Pourjavadi A, Zamanlu MR, Zohuriaan-Mehr MJ (1999) Die Angew Makromol Chem 269:54–60

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to express our gratitude to the Research Affairs Division Isfahan University of Technology (IUT), Isfahan for partial financial support. Further financial support from National Elite Foundation (NEF) and Center of Excellency in Sensors and Green Chemistry Research (IUT) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shadpour Mallakpour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mallakpour, S., Seyedjamali, H. Fast synthesis of optically active polyamides containing l-methionine linkages in ionic liquid via a microwave-assisted process. Colloid Polym Sci 287, 1111–1116 (2009). https://doi.org/10.1007/s00396-009-2080-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-009-2080-6

Keywords

Navigation