Skip to main content
Log in

Interfacial tension and wetting behavior of air/oil/ionic liquid systems

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

We measured the interfacial tension and the density of air/n-hexane, n-decane, 1-perfluorohexane/1-hexyl-3-methyl-imidazolium hexafluorophosphate systems as a function of temperature. From the air/ionic liquid surface tension values, it was suggested that Coulombic interaction between imidazolium cations and counter anions are not so much different between the surface and bulk. The density values indicated that the decrease of surface tension by saturating organics was closely correlated to the mutual solubility between ionic liquid and organics. Interfacial tension at the oil/ionic liquid interfaces suggested that ionic liquid molecules were more ordered at the oil/ionic liquid interfaces compared to the air/ionic liquid interfaces, but the decrease of the entropy due to the interfacial orientation of ionic liquid was compensated by the increase of the entropy due to the contact of different chemical species. The initial spreading coefficients and the Hamaker constants indicated that all the oil phases spread at the air/ionic liquid interfaces spontaneously, and form the complete wetting films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Walden P (1914) Bull Acad Imper Sci St Petersburg 22:405

    Google Scholar 

  2. Wilkes JS, Levisky JA, Wilson RA, Hussey CL (1982) Inorg Chem 21:1263

    Article  CAS  Google Scholar 

  3. Wilkes JS, Zaworotko MJ (1992) J Chem Soc Chem Commun 13:965

    Article  Google Scholar 

  4. Fry SC, Pienta NJ (1992) J Am Chem Soc 107:9366

    Google Scholar 

  5. Boon JA, Levisky JA, Pflug JL, Wilkes JS (1986) J Org Chem 51:480

    Article  CAS  Google Scholar 

  6. Earle MJ, Seddon KR (2000) Pure Appl Chem 72:1391

    Article  CAS  Google Scholar 

  7. Reiter J, Vondrak J, Michalek J, Micka Z (2006) Electrochim Acta 52:1398

    Article  CAS  Google Scholar 

  8. Quinn BM, Ding Z, Moulton R, Bard AJ (2002) Langmuir 18:1734

    Article  CAS  Google Scholar 

  9. Kamimura H, Kubo T, Minami I, Mori S (2007) Tribol Int 40:620

    Article  CAS  Google Scholar 

  10. Yu B, Zhou F, Mu Z, Liang Y, Liu W (2006) Tribol Int 39:879

    Article  CAS  Google Scholar 

  11. Fannin AA, Floreani JDA, King LA, Landers JS, Piersma BJ, Stech DJ, Vaughn RL, Wilkes JS, Williams JL (1984) J Phys Chem 88:2614

    Article  CAS  Google Scholar 

  12. Holbrey JD, Seddon KR (1999) J Chem Soc, Dalton Trans 13:2133

    Article  Google Scholar 

  13. Tsuzuki S, Tokuda H, Hayamizu K, Watanabe M (2005) J Phys Chem B 109:16474

    Article  CAS  Google Scholar 

  14. Kim K, Shin B, Lee H, Ziegler F (2004) Fluid Phase Equilib 218:215

    Article  CAS  Google Scholar 

  15. Huddleston JG, Visser AE, Reichert WM, Willauer HD, Broker GA, Rogers RD (2001) Green Chem 3:156

    Article  CAS  Google Scholar 

  16. Sakamoto H, Murao A, Hayami Y (2002) J Inst Image Inform & Television Eng 56:1643

    Google Scholar 

  17. Law G, Watson PR (2001) Chem Phys Lett 345:1

    Article  CAS  Google Scholar 

  18. Israelachvili JN (1985) Intermolecular and surface forces. Academic, London

    Google Scholar 

  19. Pereiro AB, Tojo E, Rodriguez A, Canosa J, Tojo J (2006) J Chem Thermodyn 38:651

    Article  CAS  Google Scholar 

  20. Baker SN, Baker GA, Kane MA, Bright FV (2001) J Phys Chem B 105:9663

    Article  CAS  Google Scholar 

  21. Gannon TJ, Law G, Watson PR (1999) Langmuir 15:8429

    Article  CAS  Google Scholar 

  22. Solutskin E, Ocko BM, Taman L, Kuzmenko I, Gog T, Deutsch M (2005) J Am Chem Soc 127:7796

    Article  CAS  Google Scholar 

  23. Iimori T, Iwahashi T, Ishii H, Seki K, Ouchi Y, Ozawa R, Hamaguchi H, Kim D (2004) Chem Phys Lett 389:321

    Article  CAS  Google Scholar 

  24. van Oss C (1994) J interfacial forces in aqueous media. Marcel Dekker, New York

    Google Scholar 

  25. Aratono M, Villeneuve M, Takiue T, Ikeda N, Iyota H (1998) J Colloid Interface Sci 200:161

    Article  CAS  Google Scholar 

  26. Adamson AW, Gast AP (1997) Physical chemistry of surfaces, 6th edn. Wiley & Sons, New York

    Google Scholar 

  27. de Gennes PG (1985) Rev Mod Phys 57:827

    Article  Google Scholar 

  28. Matsubara H, Aratono M, Wilkinson KM, Bain CD (2006) Langmuir 22:982

    Article  CAS  Google Scholar 

  29. Wilkinson MK, Bain CD, Matsubara H, Aratono M (2005) Chem Phys Chem 6:547

    CAS  Google Scholar 

Download references

Acknowledgement

This work was financially supported by Grant-in-Aid for Scientific Research on Priority Area (No. 18445026) and Grant-in-Aid for Scientific Reserch (B) (No. 16350075) from the Japan Society for the Promotion of Science. The authors wish to thank The Nippon Synthetic Chemical Industry Co., Ltd. for providing HMIM samples.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Takashi Matsuda or Makoto Aratono.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuda, T., Mishima, Y., Azizian, S. et al. Interfacial tension and wetting behavior of air/oil/ionic liquid systems. Colloid Polym Sci 285, 1601–1605 (2007). https://doi.org/10.1007/s00396-007-1732-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-007-1732-7

Keywords

Navigation