Skip to main content
Log in

Dissipative crystallization of aqueous solution of sodium polymethacrylate

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Drying dissipative structures of aqueous solution of sodium polymethacrylate (NaPMA) were studied on a cover glass, a watch glass, and a glass dish. Any convectional and sedimentation patterns did not appear during the course of dryness. Several important findings on the drying patterns are reported. Firstly, spherulite and hedrite dissipative crystals were observed when the polymer solutions were dried. The crystalline structures changed from hedrites to spherulites as polymer concentration increased. Secondary, the coupled structures of the spherulites and the broad rings were observed for NaPMA at the outside edge of the broad ring. However, the coupled crystalline structures of the lamellaes from the broad ring and the spherulites, which were observed for poly(ethylene glycol) (Okubo et al. 2009), were not observed clearly for NaPMA system. Thirdly, size of the broad ring at the outside edge of the dried film increased sharply as polymer concentration increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Okubo T (2006) Molecular and colloidal electro-optics. In: Stoylov SP, Stoimenova MV (eds), 573, Taylor & Francis

  2. Okubo T (2008) In: Nagarajan R, Hatton TA (eds) Nanoparticles: syntheses, stabilization, passivation and functionalization. ACS, Washington DC, p 256

    Chapter  Google Scholar 

  3. Gribbin G (1999) Almost everyone’s guide to science. The universe, life and everything. Yale University Press, New Haven

    Google Scholar 

  4. Ball P (1999) The self-made tapestry pattern formation in nature. Oxford University Press, Oxford

    Google Scholar 

  5. Okubo T (2001) Beautiful world of colloids and interfaces (Japanese). Matsuo, Gifu

    Google Scholar 

  6. Terada T, Yamamoto R, Watanabe T (1934) Sci Paper Inst Phys Chem Res Jpn 27:173; Proc Imper Acad Tokyo 10:10

    Google Scholar 

  7. Terada T, Yamamoto R, Watanabe T (1934) Sci Paper Inst Phys Chem Res Jpn 27:75

    Google Scholar 

  8. Terada T, Yamamoto R (1935) Proc Imper Acad Tokyo 11:214

    CAS  Google Scholar 

  9. Nakaya U (1947) Memoirs of Torahiko Terada (Japanese). Kobunsya, Tokyo

    Google Scholar 

  10. Okubo T, Kimura H, Kimura T, Hayakawa F, Shibata T, Kimura K (2005) Colloid Polym Sci 283:1

    Article  CAS  Google Scholar 

  11. Okubo T (2006) Colloid Polym Sci 285:225

    Article  CAS  Google Scholar 

  12. Okubo T (2009) Colloid Polym Sci 287:167

    Article  CAS  Google Scholar 

  13. Okubo T, Okamoto J, Tsuchida A (2009) Colloid Polym Sci 287:351

    Article  CAS  Google Scholar 

  14. Okubo T, Okamoto J, Tsuchida A Colloid Polym Sci (2009). [doi:10.1007/s00396-009-2021-4]

  15. Okubo T, Okamoto J, Tsuchida A (2008) Colloid Polym Sci 286:1123

    Article  CAS  Google Scholar 

  16. Okubo T (2008) Colloid Polym Sci 286:1307

    Article  CAS  Google Scholar 

  17. Okubo T (2006) Colloid Polym Sci 284:1191

    Article  CAS  Google Scholar 

  18. Okubo T (2006) Colloid Polym Sci 284:1395

    Article  CAS  Google Scholar 

  19. Okubo T, Okamoto J, Tsuchida A (2007) Colloid Polym Sci 285:967

    Article  CAS  Google Scholar 

  20. Okubo T (2007) Colloid Polym Sci 285:1495

    Article  CAS  Google Scholar 

  21. Okubo T, Okamoto J, Tsuchida A (2008) Colloid Polym Sci 286:385

    Article  CAS  Google Scholar 

  22. Okubo T, Okamoto J, Tsuchida A (2008) Colloid Polym Sci 286:941

    Article  CAS  Google Scholar 

  23. Yamaguchi T, Kimura K, Tsuchida A, Okubo T, Matsumoto M (2005) Colloid Polym Sci 283:1123

    Article  CAS  Google Scholar 

  24. Okubo T (2006) Colloid Polym Sci 285:331

    Article  CAS  Google Scholar 

  25. Vanderhoff JW (1973) J Polym Sci Symp 41:155

    Article  Google Scholar 

  26. Nicolis G, Prigogine I (1977) Self-organization in non-equilibrium systems. Wiley, New York

    Google Scholar 

  27. Ohara PC, Heath JR, Gelbart WM (1997) Angew Chem 109:1120

    Article  Google Scholar 

  28. Maenosono S, Dushkin CD, Saita S, Yamaguchi Y (1999) Langmuir 15:957

    Article  CAS  Google Scholar 

  29. Nikoobakht B, Wang ZL, El-Sayed MA (2000) J Phys Chem 104:8635

    CAS  Google Scholar 

  30. Ung T, Litz-Marzan LM, Mulvaney P (2001) J Phys Chem B 105:3441

    Article  CAS  Google Scholar 

  31. Okubo T, Onoshima D, Tsuchida A (2007) 285:999

  32. Okubo T, Kanayama S, Ogawa H, Hibino M, Kimura K (2004) Colloid Polym Sci 282:230

    Article  CAS  Google Scholar 

  33. Shimomura M, Sawadaishi T (2001) Curr Opin Coll Interf Sci 6:11

    Article  CAS  Google Scholar 

  34. Okubo T, Yamada T, Kimura K, Tsuchida A (2006) Colloid Polym Sci 284:396

    Article  CAS  Google Scholar 

  35. Kimura K, Kanayama S, Tsuchida A, Okubo T (2005) Colloid Polym Sci 283:898

    Article  CAS  Google Scholar 

  36. Okubo T, Shinoda C, Kimura K, Tsuchida A (2005) Langmuir 21:9889

    Article  CAS  Google Scholar 

  37. Okubo T, Kanayama S, Kimura K (2004) Colloid Polym Sci 282:486

    Article  CAS  Google Scholar 

  38. Okubo T, Itoh E, Tsuchida A, Kokufuta E (2006) Colloid Polym Sci 285:339

    Article  CAS  Google Scholar 

  39. Okubo T, Yokota N, Tsuchida A (2007) Colloid Polym Sci 285:1257

    Article  CAS  Google Scholar 

  40. Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA (1997) Nature 389:827

    Article  CAS  Google Scholar 

  41. Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA (2000) Phys Rev E 62:756

    Article  CAS  Google Scholar 

  42. Cachile M, Benichou O, Cazabat AM (2002) Langmuir 18:7985

    Article  CAS  Google Scholar 

  43. Cachile M, Benichou O, Poulard C, Cazabat AM (2002) Langmuir 18:8070

    Article  CAS  Google Scholar 

  44. Palmer HJ (1976) J Fluid Mech 75:487

    Article  Google Scholar 

  45. Anderson DM, Davis SH (1995) Phys Fluids 7:248

    Article  CAS  Google Scholar 

  46. Pouth AF, Russel WB (1998) AIChEJ 44:2088

    Article  Google Scholar 

  47. Burelbach JP, Bankoff SG (1998) J Fluid Mech 195:463

    Article  Google Scholar 

  48. Matar K, Craster RV (2001) Phys Fluids 13:1869

    Article  CAS  Google Scholar 

  49. Hu H, Larson RG (2002) J Phys Chem B 106:1334

    Article  CAS  Google Scholar 

  50. Rabani E, Reichman DR, Geissler PL, Brus LE (2003) Nature 426:271

    Article  CAS  Google Scholar 

  51. Fischer BJ (2002) Langmuir 18:60

    Article  CAS  Google Scholar 

  52. Okubo T, Okamoto J, Takahashi S, Tsuchida A (2009) Colloid Polymer Sci. doi:10.1007/s00396-009-2049-5

Download references

Acknowledgments

Professor Emeritus Keisuke Kaji of Kyoto University is highly acknowledged for his valuable comments for this work. Financial supports from the Ministry of Education, Culture, Sports, Science, and Technology, Japan and Japan Society for the Promotion of Science are greatly acknowledged for Grants-in-Aid for Exploratory Research (17655046 to T.O.) and Scientific Research (B) (18350057 to T.O. and 19350110 to A.T.). Research fund from Rex Co. Tokyo to T.O. is also highly thanked.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsuneo Okubo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okubo, T., Hagiwara, A., Kitano, H. et al. Dissipative crystallization of aqueous solution of sodium polymethacrylate. Colloid Polym Sci 287, 1155–1165 (2009). https://doi.org/10.1007/s00396-009-2075-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-009-2075-3

Keywords

Navigation