Skip to main content
Log in

Effect of surfactant on the swelling of polymeric nanoparticles: toward a generalized approach

  • Short Communication
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Tauer et al. (Colloid Polym Sci 278:814–820, 2000) claim that the well-known Morton-Kaizerman-Altier (MKA) equation fails to describe experimental swelling data of polystyrene particles with toluene in the absence of free or adsorbed surfactant. They made modifications to the MKA equation to fit their own data; however, they were not able to fit the MKA data obtained in the presence of surfactant. In this work, based on the modified MKA equation, we propose a new approach to take into account the effect of surfactant on the swelling behavior of polymer latex particles such that with only one set of parameters, it is possible to fit the Tauer et al. data and to predict the MKA data. Comparisons of model against experimental data in presence and absence of surfactant are showed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Morton M, Kaizerman S, Altier MW (1954) Swelling of latex particles. J Colloid Interface Sci 9:300

    CAS  Google Scholar 

  2. Flory PJ (ed) (1953) Principles of polymer chemistry. Cornell University Press, New York

    Google Scholar 

  3. Tauer K, Kaspar H, Antonietti M (2000) Equilibrium swelling of colloidal polymeric particles with water-insoluble organic solvents. Colloid Polym Sci 278(9):814

    Article  CAS  Google Scholar 

  4. Antonietti M, Kaspar H, Tauer K (1996) Swelling equilibrium of small polymer colloids: influence of surface structure and a size-dependent depletion correction. Langmuir 12(26):6211

    Article  CAS  Google Scholar 

  5. Gibbs JW (1928) Collected works. New York, Longman

    Google Scholar 

  6. Tolman RC (1949) The effect of droplet size on surface tension. J Chem Phys 17(3):333

    Article  CAS  Google Scholar 

  7. Olayo R, Garcia E, Garcia-Corichi B, Sanchez-Vazquez L, Alvarez J (1998) Poly(vinyl alcohol) as a stabilizer in the suspension polymerization of styrene: the effect of the molecular weight. J Appl Polym Sci 67(1):71

    Article  CAS  Google Scholar 

  8. Almgren M, Swarup S (1982) Size of sodium dodecyl sulfate micelles in the presence of additives. 2. Aromatic and saturated hydrocarbons. J Phys Chem 86(21):4212

    Article  CAS  Google Scholar 

  9. Ugelstad J, Mórk PC, Kaggerud KH, Ellingsen T, Berge A (1980) Swelling of oligomer-polymer particles. New methods of preparation. Adv Colloid Interface Sci 13(12):101

    Article  CAS  Google Scholar 

  10. Ugelstad J, Mork PC, Mfutakamba HR, Soleimany E, Nordhus I, Nustad K, Schmid R, Berge A, Ellingsen T, Anue O (1983) In: Poehlein GW, Ottewill RH, Goodwin JW (eds) Science and technology of polymer colloids. Martinus Nijhoff, Amsterdam, p 51

  11. Hansen FK, Ugelstad J (1979) Particle nucleation in emulsion polymerization. III. Nucleation in systems with anionic emulsifier, investigated by seeded and unseeded polymerization. J Polym Sci: Polym Chem Ed 17:3047

    Article  CAS  Google Scholar 

  12. Bloch D (1999) Polymer handbook. In: Brandrup J, Immergut EH, Grulke EA (eds) Polymer handbook. Wiley-Interscience, Hoboken, New Jersey

    Google Scholar 

  13. Brodnyan JG, Kelley EL (1969) Studies of adsorption onto synthetic latices. J Polym Sci Part C: Polym Symp 27(1):263

    Article  Google Scholar 

  14. Carro S (2006) Estudio de la cinetica de polimerización en emulsión de estireno mediante la tecnica de fraccionamiento por flujo bajo un campo de flujo asimetrico., Disertation., Centro de Investigación en Química Aplicada: Saltillo. p 185

  15. Perry RH, Green DW (1999) Perry’s chemical engineers’ Handbook. McGraw-Hill, New York

    Google Scholar 

  16. Vijayendran BR (1980) Effect of polymer polarity on the adsorption of sodium lauryl sulfate at latex/water interfaces. In: Fitch RM (ed) Polymer colloids II. Part 1. Plenum Press, New York

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Council of Science and Technology (CONACyT-Mexico) for supporting this project (grant 62041) as well as a predoctoral scholarship for L. Farias-Cepeda. The authors gratefully acknowledge Mrs. Patricia Siller and Mr. Sion NG for their assistance in searching and securing pertinent literature and English checking, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Herrera-Ordonez.

Appendices

Appendix 1

The value of ϕ S can be estimated as follows:

$$ {\phi_{\text{S}}} = \frac{\text{volume of surfactantvolume of particle}} = \frac{{{v_{\text{s}}}}}{v} = \frac{{a\theta {M_{\text{H}}}{Y_{\text{t}}}}}{{{a_{\text{s}}}{N_{\text{A}}}{d_{\text{H}}}v}}, $$
(17)

where v s is the volume contribution of the hydrophobic parts of the adsorbed surfactant molecules to the total volume (v) of the particles. Y t is the number of hydrophobic tails per surfactant molecule (for SDS, Y t = 1), M H is the molecular weight of a tail, N A is the Avogadro’s number, and a is the surface area of a particle. Simplifying Eq. 17 is obtained that

$$ {\phi_{\text{S}}} = \left( {\frac{{3\theta {M_{\text{H}}}{Y_{\text{t}}}}}{{{a_{\text{S}}}{N_{\text{A}}}r{d_{\text{H}}}}}} \right). $$
(18)

Appendix 2

Surfactant coverage is given by

$$ \theta = \frac{{{S_{\text{ads}}}}}{{{{\left( {{S_{^{\text{ads}}}}} \right)}^{\text{sat}}}}}, $$
(19)

where S ads and (S ads)sat are the amount of surfactant adsorbed onto the surface of the particles at non-saturation and saturation conditions, respectively.

Sads is calculated by means of a modified Langmuir adsorption isotherm [11].

$$ {S_{\text{ads}}} = \frac{{{A_{\text{p}}}}}{{{a_{\text{s}}}}}\left( {\frac{{\alpha + {\text{CMC}}}}{\text{CMC}}} \right)\left( {\frac{{{S_{\text{free}}}}}{{\alpha + {S_{\text{free}}}}}} \right). $$
(20)

Ap is the total area of particles, and CMC is the critical micelle concentration of surfactant. α is the Langmuir adsorption constant. (Sads)sat is given by

$$ {\left( {{S_{^{\text{ads}}}}} \right)^{\text{sat}}} = \frac{{{A_{\text{p}}}}}{{{a_{\text{s}}}}}. $$
(21)

Substitution of Eqs. 20 and 21 in 19 gives

$$ \theta = \left( {\frac{{\alpha + {\text{CMC}}}}{\text{CMC}}} \right)\left( {\frac{{{S_{\text{free}}}}}{{\alpha + {S_{\text{free}}}}}} \right). $$
(22)

Solving Eq. 22 for S free is obtained that

$$ {S_{\text{free}}} = \frac{{\theta \alpha }}{{\left( {\frac{{\alpha + {\text{CMC}}}}{\text{CMC}} - \theta } \right)}}. $$
(23)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farias-Cepeda, L., Herrera-Ordonez, J. & Saldívar-Guerra, E. Effect of surfactant on the swelling of polymeric nanoparticles: toward a generalized approach. Colloid Polym Sci 287, 1215–1220 (2009). https://doi.org/10.1007/s00396-009-2073-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-009-2073-5

Keywords

Navigation